研究論文の国際学会採択予測

文書作成術が採択率に与える重要性とは?

賞金: 100,000 参加ユーザー数: 189 1年以上前に終了

BERT Embeddings を利用した学習

 今回は自然言語処理がテーマとなるため、デファクトスタンダードであるBERTを使用したいところです。しかしBERTの学習に用いるGPUを用意するのがネックになります。(Oreginさんの紹介されているBERTモデルはGoogle Colab上で動かしていますが、現在のColabではGPU利用に課金が必要となり、以前のように簡単に計算資源の確保ができません。)
 そこでBERTを用いて抽出した特徴量を学習に利用することで、GPUが無くてもBERTの恩恵を得られるような方法を考えます。具体的には事前学習済みモデルへテキストデータを入力し、出力層の前の層からEmbedding特徴を抽出します。これを様々な事前学習済みモデルについて行い、多様な特徴を抽出します。最後に抽出した全特徴量を用いて何らかの学習器で予測を行います。この方法のメリットは以下にあります。

  • 学習を一切行わないため、GPUが無くても時間をかければ様々な事前学習済みモデルから特徴を抽出できる
  • 他の特徴量(例えばキーワードの数など)と併用が簡単にできる

このアイデアはKaggleの「Feedback Prize - English Language Learning」で知ったもので、この内容も下記内容をそのまま試したものになります。

RAPIDS SVR - CV 0.450 - LB 0.44x
https://www.kaggle.com/code/cdeotte/rapids-svr-cv-0-450-lb-0-44x

上記の紹介では他のBERTモデルに匹敵するほどの精度を出せており、アンサンブル時にも活用できたようです。

!nvidia-smi
Sun Feb 26 22:13:47 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   71C    P8    14W /  70W |      0MiB / 15360MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
%%capture
!echo "deb http://packages.cloud.google.com/apt gcsfuse-`lsb_release -c -s` main" | sudo tee /etc/apt/sources.list.d/gcsfuse.list
!curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
!apt-get update
!apt-get install gcsfuse
!mkdir -p /content/gcs
!gcsfuse bucket-paper-acception /content/gcs
%%capture
!pip install polars
! pip install transformers
! pip install sentencepiece
!pip install fontstyle
# ----------
# ライブラリ
# ----------
import os
import random
import numpy as np
import torch
from psutil import virtual_memory

import polars as pl
import pandas as pd
from sklearn.model_selection import StratifiedKFold

from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
from tqdm.auto import tqdm

import xgboost as xgb
import scipy.stats as stats
import lightgbm as lgbm
from sklearn.metrics import accuracy_score
import fontstyle
import warnings
warnings.simplefilter('ignore')

GPUを使用しない場合はDEVICE='cpu'に変更します。

# ----------
# 設定
# ----------
num_fold = 5
seed = 0

DEVICE = "cuda" # "cpu" or "cuda"
tokenizer = None
BATCH_SIZE = 16
MAX_LEN = 768

# テキスト特徴として連結するカラム
txt_columns = ['title', 'keywords', 'abstract']
# ----------
# 関数
# ----------
def set_seed(seed=42):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        current_device = torch.cuda.current_device()
        print("Device:", torch.cuda.get_device_name(current_device))
        ram_gb = virtual_memory().total / 1e9
        print('Your runtime has {:.1f} gigabytes of available RAM\n'.format(ram_gb))

def get_stratifiedkfold(train, target_col, n_splits, seed):
    kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed)
    generator = kf.split(train.to_numpy(), train.get_column(target_col).to_numpy())
    fold_array = np.zeros(len(train))
    for fold, (_, idx_valid) in enumerate(generator):
        fold_array[idx_valid] = fold
    return fold_array

学習用にtitle, abstract, keywordsの要素数を特徴として追加しています。

# ----------
# データ
# ----------
train = pl.read_csv('/content/gcs/train.csv')
test = pl.read_csv('/content/gcs/test.csv')
sub = pl.read_csv('/content/gcs/submission.csv')

# ----------
# 前処理・特徴生成
# ----------
set_seed(seed)

# テキスト特徴の作成
# グループごとにFold数を設定
train =\
train.with_columns(
    pl.concat_str(txt_columns, sep='. ').alias('txt_feat'),
    # title
    pl.when(pl.col('title').str.to_lowercase().is_in(['', 'nan', '0', 'blank']))
    .then(0)
    .otherwise(pl.col('title').str.to_lowercase().str.count_match(' ') + 1)
    .alias('num_title'),
    # abstract
    pl.when(pl.col('abstract').str.to_lowercase().is_in(['', 'nan', '0', 'blank']))
    .then(0)
    .otherwise(pl.col('abstract').str.to_lowercase().str.count_match(' ') + 1)
    .alias('num_abstract'),
    # keywords
    pl.when(pl.col('keywords').str.to_lowercase().is_in(['', 'nan', '0', 'blank']))
    .then(0)
    .otherwise(pl.col('keywords').str.to_lowercase().str.count_match(' ') + 1)
    .alias('num_keywords'),
    # group
    pl.concat_str(['year', 'y'], sep='-').alias('group'),
    )

test = \
test.with_columns(
    pl.concat_str(txt_columns, sep='. ').alias('txt_feat'),
    # title
    pl.when(pl.col('title').str.to_lowercase().is_in(['', 'nan', '0', 'blank']))
    .then(0)
    .otherwise(pl.col('title').str.to_lowercase().str.count_match(' ') + 1)
    .alias('num_title'),
    # abstract
    pl.when(pl.col('abstract').str.to_lowercase().is_in(['', 'nan', '0', 'blank']))
    .then(0)
    .otherwise(pl.col('abstract').str.to_lowercase().str.count_match(' ') + 1)
    .alias('num_abstract'),
    # keywords
    pl.when(pl.col('keywords').str.to_lowercase().is_in(['', 'nan', '0', 'blank']))
    .then(0)
    .otherwise(pl.col('keywords').str.to_lowercase().str.count_match(' ') + 1)
    .alias('num_keywords'),
    )

display(train.head(3))
display(test.head(3))
Device: Tesla T4
Your runtime has 13.6 gigabytes of available RAM

shape: (3, 11)
id title year abstract keywords y txt_feat num_title num_abstract num_keywords group
i64 str i64 str str i64 str u32 u32 u32 str
1 "Hierarchical A... 2018 "We propose a n... "generative, hi... 0 "Hierarchical A... 4 155 7 "2018-0"
2 "Learning to Co... 2018 "Words in natur... "NLU, word embe... 0 "Learning to Co... 8 130 5 "2018-0"
3 "Graph2Seq: Sca... 2018 "Neural network... "" 0 "Graph2Seq: Sca... 6 143 0 "2018-0"
shape: (3, 9)
id title year abstract keywords txt_feat num_title num_abstract num_keywords
i64 str i64 str str str u32 u32 u32
1 "StyleAlign: An... 2022 "In this paper,... "StyleGAN, tran... "StyleAlign: An... 8 209 11
2 "Embedding a ra... 2021 "We develop a t... "Graph neural n... "Embedding a ra... 16 272 11
3 "BBRefinement: ... 2021 "We present a c... "object detecti... "BBRefinement: ... 11 152 6
# ----------
# BERT
# ----------

# Dataset
class EmbedDataset(torch.utils.data.Dataset):
    def __init__(self, df):
        self.df = df
    def __len__(self):
        return len(self.df)
    def __getitem__(self, idx):
        text = self.df[idx, 'txt_feat']
        tokens = tokenizer(
                text,
                None,
                add_special_tokens=True,
                padding='max_length',
                truncation=True,
                max_length=MAX_LEN,
                return_tensors="pt")
        tokens = {k:v.squeeze(0) for k,v in tokens.items()}
        return tokens

# Pooling
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output.last_hidden_state.detach().cpu()
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )

def get_embeddings(MODEL_NM='', MAX_LEN=512, BATCH_SIZE=4, verbose=True):
    global tokenizer, DEVICE

    model = AutoModel.from_pretrained(MODEL_NM)
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NM)
    
    model = model.to(DEVICE)
    model.eval()
        
    # train
    all_train_text_feats = []
    for batch in tqdm(embed_dataloader_tr,total=len(embed_dataloader_tr)):
        input_ids = batch["input_ids"].to(DEVICE)
        attention_mask = batch["attention_mask"].to(DEVICE)
        with torch.no_grad():
            model_output = model(input_ids=input_ids,attention_mask=attention_mask)
        sentence_embeddings = mean_pooling(model_output, attention_mask.detach().cpu())
        # Normalize the embeddings
        sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
        sentence_embeddings =  sentence_embeddings.squeeze(0).detach().cpu().numpy()
        all_train_text_feats.extend(sentence_embeddings)
    all_train_text_feats = np.array(all_train_text_feats)
    if verbose:
        print('Train embeddings shape',all_train_text_feats.shape)
    
    # test
    te_text_feats = []
    for batch in tqdm(embed_dataloader_te,total=len(embed_dataloader_te)):
        input_ids = batch["input_ids"].to(DEVICE)
        attention_mask = batch["attention_mask"].to(DEVICE)
        with torch.no_grad():
            model_output = model(input_ids=input_ids,attention_mask=attention_mask)
        sentence_embeddings = mean_pooling(model_output, attention_mask.detach().cpu())
        # Normalize the embeddings
        sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
        sentence_embeddings =  sentence_embeddings.squeeze(0).detach().cpu().numpy()
        te_text_feats.extend(sentence_embeddings)
    te_text_feats = np.array(te_text_feats)
    if verbose:
        print('Test embeddings shape',te_text_feats.shape)
        
    # save feat
    np.save(f"{MODEL_NM.split('/')[-1]}_train", all_train_text_feats)
    np.save(f"{MODEL_NM.split('/')[-1]}_test", te_text_feats)

    return all_train_text_feats, te_text_feats
ds_tr = EmbedDataset(train)
embed_dataloader_tr = torch.utils.data.DataLoader(ds_tr,\
                        batch_size=BATCH_SIZE,\
                        shuffle=False)
ds_te = EmbedDataset(test)
embed_dataloader_te = torch.utils.data.DataLoader(ds_te,\
                        batch_size=BATCH_SIZE,\
                        shuffle=False)

ここでは事前学習済みモデルに'deberta-v3-base'を使用しました。本来は'deberta-v3-large', 'deberta-v2-xlarge'など他のモデルからも特徴を抽出します。GPUと比べてCPUではかなり時間を要しますが、実行可能です。

%%time
MODEL_NM = 'microsoft/deberta-v3-base'
train_emb, test_emb = get_embeddings(MODEL_NM, MAX_LEN, BATCH_SIZE)
Some weights of the model checkpoint at microsoft/deberta-v3-base were not used when initializing DebertaV2Model: ['lm_predictions.lm_head.dense.bias', 'mask_predictions.classifier.bias', 'lm_predictions.lm_head.LayerNorm.bias', 'mask_predictions.LayerNorm.weight', 'lm_predictions.lm_head.bias', 'mask_predictions.classifier.weight', 'lm_predictions.lm_head.LayerNorm.weight', 'mask_predictions.dense.weight', 'mask_predictions.dense.bias', 'mask_predictions.LayerNorm.bias', 'lm_predictions.lm_head.dense.weight']
- This IS expected if you are initializing DebertaV2Model from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing DebertaV2Model from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
  0%|          | 0/311 [00:00<?, ?it/s]
Train embeddings shape (4974, 768)
  0%|          | 0/400 [00:00<?, ?it/s]
Test embeddings shape (6393, 768)
CPU times: user 16min 24s, sys: 40 s, total: 17min 4s
Wall time: 17min 27s

得られたEmbedding特徴と追加で作成した特徴から学習を行います。今回はXGBoost(LightGBM)を使用しました。

emb_col = [f'emb{i}' for i in range(train_emb.shape[1])]
train_emb_df = pl.DataFrame(train_emb, schema=emb_col)
train = pl.concat([train, train_emb_df], how='horizontal')
test_emb_df = pl.DataFrame(test_emb, schema=emb_col)
test = pl.concat([test, test_emb_df], how='horizontal')
# Run XGBoost
use_col = ['num_title', 'num_abstract', 'num_keywords'] + emb_col
test_x = test.select(use_col).to_numpy()

whole_va_preds = []
whole_test_preds = []
for seed in range(3):
    print(fontstyle.apply(f'< Seed : {seed} >', 'BLACK/BOLD'))
    set_seed(seed)
    train = train.with_columns(
        pl.Series(get_stratifiedkfold(train, 'group', num_fold, seed))
        .alias('folds')
        )
    
    oof_preds = np.zeros((len(train), ), dtype=np.float32)
    preds = []
    for fold in range(num_fold):
        tr_x = train.filter(pl.col('folds')!=fold).select(use_col).to_numpy()
        tr_y = train.filter(pl.col('folds')!=fold).select('y').to_numpy()
        va_x = train.filter(pl.col('folds')==fold).select(use_col).to_numpy()
        va_y = train.filter(pl.col('folds')==fold).select('y').to_numpy()

        params = {
        'objective': 'binary:logistic',
        'n_estimators': 10000,
        'random_state': 0, 
        'learning_rate': 0.01,
        'max_depth': 8,
        'colsample_bytree': 1.0,
        'colsample_bylevel': 0.5,
        'subsample': 0.9,
        'gamma': 0,
        'lambda': 1,
        'alpha': 0,
        'min_child_weight': 1,
        'tree_method': 'gpu_hist',
        }

        clf = xgb.XGBClassifier(**params)
        clf.fit(
            tr_x, tr_y,
            eval_set=[(va_x, va_y)],
            early_stopping_rounds=100,
            verbose=100)

        va_preds_p = clf.predict_proba(va_x)[:, 1]
        oof_preds[
            train.select(
                pl.when(pl.col('folds')==fold).then(True).otherwise(False)
                ).to_numpy().reshape(-1)
                ] = va_preds_p
        va_preds = (va_preds_p > 0.5).astype(int)
        score = accuracy_score(va_y, va_preds)
        print(f'Fold : {fold+1} Accuracy score: {score}')
        print()
        test_preds_p = clf.predict_proba(test_x)[:, 1]
        preds.append(test_preds_p)

    score_s = accuracy_score(train.select('y').to_numpy(), oof_preds > 0.5)
    print(fontstyle.apply(f'Seed{seed} Accuracy score : {score_s}', 'BLACK/BOLD'))
    print()
    whole_va_preds.append(oof_preds)
    whole_test_preds.append(preds)

# preds_va_p = np.mean(whole_va_preds, axis=0)
# whole_score = accuracy_score(train.select('y').to_numpy(), preds_va_p > 0.5)
# preds_test = (np.mean(np.mean(whole_test_preds, axis=0), axis=0) > 0.5).astype(int)
preds_va = np.array([np.where(preds > 0.5, 1, 0) for preds in whole_va_preds])
whole_score = accuracy_score(train.select('y').to_numpy(), stats.mode(preds_va, axis=0).mode.flatten())
test_preds_array = np.array(whole_test_preds)
test_preds_array = test_preds_array.reshape(test_preds_array.shape[0]*test_preds_array.shape[1], -1)
preds_test = np.array([np.where(preds > 0.5, 1, 0) for preds in test_preds_array])
preds_test = stats.mode(preds_test, axis=0).mode.flatten()
print()  
print(fontstyle.apply(f'whole Accuracy score: {whole_score}', 'BLACK/BOLD'))
print()

display(pl.Series(preds_test).value_counts())
< Seed : 0 >
Device: Tesla T4
Your runtime has 13.6 gigabytes of available RAM

[0]	validation_0-error:0.350754
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.296482
[200]	validation_0-error:0.295477
Stopping. Best iteration:
[115]	validation_0-error:0.294472

Fold : 1 Accuracy score: 0.7055276381909548

[0]	validation_0-error:0.384925
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.311558
Stopping. Best iteration:
[38]	validation_0-error:0.303518

Fold : 2 Accuracy score: 0.6964824120603015

[0]	validation_0-error:0.377889
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.298492
Stopping. Best iteration:
[23]	validation_0-error:0.288442

Fold : 3 Accuracy score: 0.7115577889447237

[0]	validation_0-error:0.359799
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.293467
Stopping. Best iteration:
[38]	validation_0-error:0.287437

Fold : 4 Accuracy score: 0.7125628140703517

[0]	validation_0-error:0.360161
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.296781
Stopping. Best iteration:
[70]	validation_0-error:0.285714

Fold : 5 Accuracy score: 0.7142857142857143

Seed0 Accuracy score : 0.7080820265379976

< Seed : 1 >
Device: Tesla T4
Your runtime has 13.6 gigabytes of available RAM

[0]	validation_0-error:0.366834
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.303518
Stopping. Best iteration:
[22]	validation_0-error:0.291457

Fold : 1 Accuracy score: 0.7085427135678392

[0]	validation_0-error:0.39397
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.301508
Stopping. Best iteration:
[37]	validation_0-error:0.295477

Fold : 2 Accuracy score: 0.7045226130653266

[0]	validation_0-error:0.356784
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.306533
Stopping. Best iteration:
[42]	validation_0-error:0.299497

Fold : 3 Accuracy score: 0.700502512562814

[0]	validation_0-error:0.371859
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.288442
Stopping. Best iteration:
[26]	validation_0-error:0.280402

Fold : 4 Accuracy score: 0.7195979899497488

[0]	validation_0-error:0.363179
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.300805
Stopping. Best iteration:
[88]	validation_0-error:0.295775

Fold : 5 Accuracy score: 0.704225352112676

Seed1 Accuracy score : 0.7074788902291917

< Seed : 2 >
Device: Tesla T4
Your runtime has 13.6 gigabytes of available RAM

[0]	validation_0-error:0.366834
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.292462
[200]	validation_0-error:0.300503
Stopping. Best iteration:
[104]	validation_0-error:0.290452

Fold : 1 Accuracy score: 0.7095477386934673

[0]	validation_0-error:0.354774
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.307538
Stopping. Best iteration:
[22]	validation_0-error:0.302513

Fold : 2 Accuracy score: 0.6974874371859296

[0]	validation_0-error:0.378894
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.302513
Stopping. Best iteration:
[52]	validation_0-error:0.295477

Fold : 3 Accuracy score: 0.7045226130653266

[0]	validation_0-error:0.369849
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.294472
[200]	validation_0-error:0.289447
[300]	validation_0-error:0.287437
[400]	validation_0-error:0.281407
Stopping. Best iteration:
[384]	validation_0-error:0.280402

Fold : 4 Accuracy score: 0.7195979899497488

[0]	validation_0-error:0.366197
Will train until validation_0-error hasn't improved in 100 rounds.
[100]	validation_0-error:0.297787
Stopping. Best iteration:
[11]	validation_0-error:0.295775

Fold : 5 Accuracy score: 0.704225352112676

Seed2 Accuracy score : 0.7070767993566546


whole Accuracy score: 0.7143144350623241

shape: (2, 2)
counts
i64 u32
0 6132
1 261
# # Run LightGBM
# use_col = ['num_title', 'num_abstract', 'num_keywords'] + emb_col
# test_x = test.select(use_col).to_numpy()

# whole_va_preds = []
# whole_test_preds = []
# for seed in range(3):
#     print(fontstyle.apply(f'< Seed : {seed} >', 'BLACK/BOLD'))
#     set_seed(seed)
#     train = train.with_columns(
#         pl.Series(get_stratifiedkfold(train, 'group', num_fold, seed))
#         .alias('folds')
#         )
    
#     oof_preds = np.zeros((len(train), ), dtype=np.float32)
#     preds = []
#     for fold in range(num_fold):
#         tr_x = train.filter(pl.col('folds')!=fold).select(use_col).to_numpy()
#         tr_y = train.filter(pl.col('folds')!=fold).select('y').to_numpy()
#         va_x = train.filter(pl.col('folds')==fold).select(use_col).to_numpy()
#         va_y = train.filter(pl.col('folds')==fold).select('y').to_numpy()

#         params = {
#             'n_estimators' : 10000,
#             'learning_rate': 0.01,
#             'random_seed': seed,
#         }
#         clf = lgbm.LGBMClassifier(**params)
#         clf.fit(
#             tr_x, tr_y,
#             eval_set=[(va_x, va_y)],
#             early_stopping_rounds=100,
#             verbose=100)

#         va_preds_p = clf.predict_proba(va_x)[:, 1]
#         oof_preds[
#             train.select(
#                 pl.when(pl.col('folds')==fold).then(True).otherwise(False)
#                 ).to_numpy().reshape(-1)
#                 ] = va_preds_p
#         va_preds = (va_preds_p > 0.5).astype(int)
#         score = accuracy_score(va_y, va_preds)
#         print(f'Fold : {fold+1} Accuracy score: {score}')
#         print()
#         test_preds_p = clf.predict_proba(test_x)[:, 1]
#         preds.append(test_preds_p)

#     score_s = accuracy_score(train.select('y').to_numpy(), oof_preds > 0.5)
#     print(fontstyle.apply(f'Seed{seed} Accuracy score : {score_s}', 'BLACK/BOLD'))
#     print()
#     whole_va_preds.append(oof_preds)
#     whole_test_preds.append(preds)

# # preds_va_p = np.mean(whole_va_preds, axis=0)
# # whole_score = accuracy_score(train.select('y').to_numpy(), preds_va_p > 0.5)
# # preds_test = (np.mean(np.mean(whole_test_preds, axis=0), axis=0) > 0.5).astype(int)
# preds_va = np.array([np.where(preds > 0.5, 1, 0) for preds in whole_va_preds])
# whole_score = accuracy_score(train.select('y').to_numpy(), stats.mode(preds_va, axis=0).mode.flatten())
# test_preds_array = np.array(whole_test_preds)
# test_preds_array = test_preds_array.reshape(test_preds_array.shape[0]*test_preds_array.shape[1], -1)
# preds_test = np.array([np.where(preds > 0.5, 1, 0) for preds in test_preds_array])
# preds_test = stats.mode(preds_test, axis=0).mode.flatten()
# print()  
# print(fontstyle.apply(f'whole Accuracy score: {whole_score}', 'BLACK/BOLD'))
# print()

# display(pl.Series(preds_test).value_counts())

添付データ

  • BertEmbedding.ipynb?X-Amz-Expires=10800&X-Amz-Date=20241226T111855Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIP7GCBGMWPMZ42PQ
  • Favicon
    new user
    コメントするには 新規登録 もしくは ログイン が必要です。