T.T
参加者の皆様お疲れさまでした。
運営様、コンペの開催ありがとうございました。
3rd place solutionを共有します。
今回のコンペではLBのスコアを見ながらモデルを作る方法を試しました。
それがPublicLBとPrivateLBの乖離につながったのかな。と思います。
正直これ以上のスコアは出せなかったので、今の実力の限界です。
モデル作成以降は前回のコンペからほぼコピペなので、伸びしろはあると考えています。
130回目ぐらいまで何をやってもPublicLB20の壁を超えられず足踏みしていましたが、
慣習的に4連休を取る人が多い感謝祭の次の週を当てる課題であると置き換えて以降、スコアが伸びはじめました。
解法に加え、EDAで見つけた感謝祭の特徴と、タクシー需要に関するネットの書き込みについても共有します。
備考:
リファクタリングしたら若干スコアが変わりました。(Private LB 17.54004 -> 17.58470)
3rd place solutionということで、ご了承ください。
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
class CFG:
SEED = 42
IMP_TH = 90
class PATHS:
MAIN_DIR = '/content/drive/MyDrive/share/competition/タクシー需要予測'
TRAIN_DATA = MAIN_DIR + '/data/train_data.csv'
WEATHER_DATA = MAIN_DIR + '/data/nyc_weather_2017_2019.csv'
ZONE_DATA = MAIN_DIR + '/data/taxi_zones.csv'
SUBMIT_DATA = MAIN_DIR + '/output/3rd_place_solution+EDA.csv'
from scipy import signal
def signal_low_pass_filter(input_signal):
input_signal = np.nan_to_num(input_signal, nan=0.0)
b, a = signal.iirfilter(4, 0.1, btype='lowpass', analog=False)
# 初期状態を計算
zi = signal.lfilter_zi(b, a)
filtered_signal, zf = signal.lfilter(b, a, input_signal, zi=zi*input_signal[0])
return filtered_signal
# trainデータの読み込み
train_data = pd.read_csv(PATHS.TRAIN_DATA, index_col='tpep_pickup_datetime',low_memory=False)
area_cols_name = train_data.columns
# test_dataを生成
date_index = pd.date_range(start='2019/12/01 00:00:00', end='2019/12/07 23:30:00', freq='30T')
test_data = pd.DataFrame(columns=train_data.columns, index=date_index)
train_data = pd.concat([train_data, test_data], axis=0)
# 日時を分解
train_data['Year'] = pd.to_datetime(train_data.index).year
train_data['Month'] = pd.to_datetime(train_data.index).month
train_data['Day'] = pd.to_datetime(train_data.index).day
train_data['hour'] = pd.to_datetime(train_data.index).hour
train_data['min'] = pd.to_datetime(train_data.index).minute
train_data['weekday'] = pd.to_datetime(train_data.index).weekday
# 強めのローパスフィルタをかけると、Thanksgiving Dayの日はタクシー利用率が下がる傾向が確認できる
# (2017-11-23, 2018-11-22, 2019-11-28)
# 2018-11-15も下降傾向にあるが、最後上昇している、絶対値が大きい。といった異なる特徴を持っている
# Thanksgiving Dayは家でお祝いしている人が多く、4連休を取る人も多いらしい
# https://www.tripadvisor.co.uk/ShowTopic-g60763-i5-k5899614-Taxi_from_JFK_on_black_Friday-New_York_City_New_York.html
# EDAで見つけなくても利用許可された祝日ではある
# https://www.cs.ny.gov/attendance_leave/2019_legal_holidays.cfm
plt_df = train_data[train_data['Month'] == 11]
for index in range(7):
# 指定した曜日のデータを取得
weekday_data = plt_df[plt_df['weekday'] == index]
# 曜日ごとにデータを重ねてプロット(乗車数の多い33を使って特徴を観測)
plt.figure(figsize=(8, 3))
for _, plot_data in weekday_data.groupby(weekday_data['Day']):
plot_data['filtered_33'] = signal_low_pass_filter(plot_data['33'].values)
plot_data['filtered_33'] = (plot_data['filtered_33'] - plot_data['filtered_33'].min()) / (plot_data['filtered_33'].max() - plot_data['filtered_33'].min())
plt.plot(plot_data['filtered_33'].values, label=plot_data.index[0])
# 凡例を左外に表示
plt.legend(loc='upper left', bbox_to_anchor=(1, 1), bbox_transform=plt.gcf().transFigure)
plt.show()
import re
# 独自の置換関数を定義。replace関数だとNaNになってしまう行があった
def replace_text_re(text):
if isinstance(text, str): # 列の要素が文字列であるかを確認
# 英語の文字(アルファベット)をスペースに置き換える正規表現
pattern = re.compile(r'[a-zA-Z]+')
# 正規表現にマッチする部分をスペースに置き換える
replaced_text = pattern.sub('', text)
return replaced_text
else:
return text # 文字列でない場合はそのまま返す
# 天候データの読み込み
weather_data_org = pd.read_csv(PATHS.WEATHER_DATA, index_col='DATE',low_memory=False)
weather_data_org.index = pd.to_datetime(weather_data_org.index)
#欠落している情報を直前の値で補間
lack_weather_info = pd.DataFrame(weather_data_org.loc['2019-05-09 22:51:00']).T.rename_axis('DATE')
lack_weather_info.index = ['2019-05-09 23:00:00']
weather_data_org = pd.concat([weather_data_org, lack_weather_info], axis=0)
weather_data_org.fillna(method='ffill',inplace=True)
# 日時を分解
weather_data_org['Year'] = pd.to_datetime(weather_data_org.index).year
weather_data_org['Month'] = pd.to_datetime(weather_data_org.index).month
weather_data_org['Day'] = pd.to_datetime(weather_data_org.index).day
weather_data_org['hour'] = pd.to_datetime(weather_data_org.index).hour
# データクレンジング
weather_data_org['HourlyPrecipitation'] = weather_data_org['HourlyPrecipitation'].str.replace('s', '')
weather_data_org['HourlyPrecipitation'] = weather_data_org['HourlyPrecipitation'].str.replace('T', '0')
weather_data_org['HourlyPrecipitation'] = pd.to_numeric(weather_data_org['HourlyPrecipitation'])
#.replaceを使うとうまく行かないので、置換用の関数を使用(理由は不明)
weather_data_org['HourlyDryBulbTemperature'] = weather_data_org['HourlyDryBulbTemperature'].apply(replace_text_re)
weather_data_org['HourlyDryBulbTemperature'] = weather_data_org['HourlyDryBulbTemperature'].astype(np.float16)
weather_data_org['HourlyDewPointTemperature'] = weather_data_org['HourlyDewPointTemperature'].apply(replace_text_re)
weather_data_org['HourlyDewPointTemperature'] = weather_data_org['HourlyDewPointTemperature'].astype(np.float16)
weather_data_org['HourlyWetBulbTemperature'] = weather_data_org['HourlyWetBulbTemperature'].astype(np.float16)
weather_data_org['HourlyAltimeterSetting'] = weather_data_org['HourlyAltimeterSetting'].apply(replace_text_re)
weather_data_org['HourlyAltimeterSetting'] = weather_data_org['HourlyAltimeterSetting'].astype(np.float16)
weather_data_org['HourlySeaLevelPressure'] = weather_data_org['HourlySeaLevelPressure'].apply(replace_text_re)
weather_data_org['HourlySeaLevelPressure'] = weather_data_org['HourlySeaLevelPressure'].astype(np.float16)
weather_data_org['HourlyStationPressure'] = weather_data_org['HourlyStationPressure'].apply(replace_text_re)
weather_data_org['HourlyStationPressure'] = weather_data_org['HourlyStationPressure'].astype(np.float16)
weather_data_org['HourlyVisibility'] = weather_data_org['HourlyVisibility'].apply(replace_text_re)
weather_data_org['HourlyVisibility'] = weather_data_org['HourlyVisibility'].astype(np.float16)
weather_data_org['HourlyWindSpeed'] = weather_data_org['HourlyWindSpeed'].astype(np.int16)
def predict_weather(row):
if row['HourlyPrecipitation'] < 0.1:
return 0 # 降水量が少ない場合、晴れと予測
elif row['HourlyPressureChange'] > 0:
return 1 # 気圧が上昇している場合、安定した天気と予測
else:
return 2 # 気圧が下降している場合、不安定な天気と予測
# 天候データの特徴量追加
# 天候の予測
weather_data_org['predict_weather'] = weather_data_org.apply(predict_weather, axis=1)
# 寒さ指数
weather_data_org['Wind Chill Index'] = 13.12 + 0.6215 * weather_data_org['HourlyWetBulbTemperature'] - 11.37 * weather_data_org['HourlyWindSpeed'] + 0.3965 * weather_data_org['HourlyWetBulbTemperature'] * weather_data_org['HourlyWindSpeed']
# 不快指数
T_w = weather_data_org['HourlyDewPointTemperature'] - (100 - weather_data_org['HourlyRelativeHumidity']) / 5
weather_data_org['discomfort index'] = T_w - 0.55 * (1 - weather_data_org['HourlyRelativeHumidity'] / 100) * (T_w - 58)
# 平均的な値を算出(スコアが良かった特徴量だけ)
feature_cols = ['HourlyAltimeterSetting', 'HourlyPressureTendency', 'HourlyVisibility',
'HourlyStationPressure', 'predict_weather', 'Wind Chill Index', 'discomfort index',
'Year', 'Month', 'Day', 'hour']
weather_data = weather_data_org[feature_cols]
group_cols = ['Year', 'Month', 'Day', 'hour']
weather_feat_df = weather_data.groupby(group_cols).mean().reset_index(drop=True)
#train_dataと時間間隔を合わせる
weather_feat_df = weather_feat_df.loc[weather_feat_df.index.repeat(2)].reset_index(drop=True)
weather_feat_df = weather_feat_df[:len(train_data)]
weather_feat_df = weather_feat_df.fillna(0)
weather_cols = weather_feat_df.columns
def add_feats_function(df):
# 2019年で正規化
for col in area_cols_name:
Nov2017_mean = df[(df['Year'] == 2017) & (df['Month'] == 11)][col].mean()
Nov2018_mean = df[(df['Year'] == 2018) & (df['Month'] == 11)][col].mean()
Nov2019_mean = df[(df['Year'] == 2019) & (df['Month'] == 11)][col].mean()
df[col] = pd.concat([
df[df['Year'] == 2017][col] / Nov2017_mean * Nov2019_mean,
df[df['Year'] == 2018][col] / Nov2018_mean * Nov2019_mean,
df[df['Year'] == 2019][col] / Nov2019_mean * Nov2019_mean
], axis = 0)
# 強めのローパスフィルタをかけた波形
iir_col_list = []
for col in area_cols_name:
df[f'{col}_iir'] = signal_low_pass_filter(df[col].values)
iir_col_list.append(f'{col}_iir')
df = df.drop(['Year', 'Month', 'Day',], axis=1)
# スコアがよかった曜日単位の特徴量
group_cols = ['hour', 'min', 'weekday']
median_df = df.groupby(group_cols).transform('median').add_suffix('_weekday_median')
std_df = df.groupby(group_cols).transform('std').add_suffix('_weekday_std')
df = pd.concat([df, median_df, std_df], axis=1)
# スコアがよかった天候関係の特徴量
for col in weather_cols:
df = pd.concat([df,
df[col].diff(1).fillna(method='bfill').rename(f'{col}_diff'),
df[col].shift(1).fillna(method='bfill').rename(f'{col}_shift'),
df[col].ewm(span = 2 * 24).mean().fillna(method='bfill').rename(f'{col}_ewm_mean24'),
], axis=1)
df = df.drop(iir_col_list, axis=1)
return df
df_org = pd.concat([train_data.reset_index(), weather_feat_df,], axis=1)
# スコアが最もよくなる範囲
df_org = df_org[(df_org['Month']==11) | ((df_org['Month']==12) & (df_org['Day']<=7))]
df_org = df_org.set_index('index')
df_org = add_feats_function(df_org)
pd.set_option('display.max_columns', 1000)
display(df_org)
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | hour | min | weekday | HourlyAltimeterSetting | HourlyPressureTendency | HourlyVisibility | HourlyStationPressure | predict_weather | Wind Chill Index | discomfort index | 0_weekday_median | 1_weekday_median | 2_weekday_median | 3_weekday_median | 4_weekday_median | 5_weekday_median | 6_weekday_median | 7_weekday_median | 8_weekday_median | 9_weekday_median | 10_weekday_median | 11_weekday_median | 12_weekday_median | 13_weekday_median | 14_weekday_median | 15_weekday_median | 16_weekday_median | 17_weekday_median | 18_weekday_median | 19_weekday_median | 20_weekday_median | 21_weekday_median | 22_weekday_median | 23_weekday_median | 24_weekday_median | 25_weekday_median | 26_weekday_median | 27_weekday_median | 28_weekday_median | 29_weekday_median | 30_weekday_median | 31_weekday_median | 32_weekday_median | 33_weekday_median | 34_weekday_median | 35_weekday_median | 36_weekday_median | 37_weekday_median | 38_weekday_median | 39_weekday_median | 40_weekday_median | 41_weekday_median | 42_weekday_median | 43_weekday_median | 44_weekday_median | 45_weekday_median | 46_weekday_median | 47_weekday_median | 48_weekday_median | 49_weekday_median | 50_weekday_median | 51_weekday_median | 52_weekday_median | 53_weekday_median | 54_weekday_median | 55_weekday_median | 56_weekday_median | 57_weekday_median | 58_weekday_median | 59_weekday_median | 60_weekday_median | 61_weekday_median | 62_weekday_median | 63_weekday_median | 64_weekday_median | 65_weekday_median | 66_weekday_median | 67_weekday_median | 68_weekday_median | 69_weekday_median | 70_weekday_median | 71_weekday_median | 72_weekday_median | 73_weekday_median | 74_weekday_median | 75_weekday_median | 76_weekday_median | 77_weekday_median | 78_weekday_median | HourlyAltimeterSetting_weekday_median | HourlyPressureTendency_weekday_median | HourlyVisibility_weekday_median | HourlyStationPressure_weekday_median | predict_weather_weekday_median | Wind Chill Index_weekday_median | discomfort index_weekday_median | 0_iir_weekday_median | 1_iir_weekday_median | 2_iir_weekday_median | 3_iir_weekday_median | 4_iir_weekday_median | 5_iir_weekday_median | 6_iir_weekday_median | 7_iir_weekday_median | 8_iir_weekday_median | 9_iir_weekday_median | 10_iir_weekday_median | 11_iir_weekday_median | 12_iir_weekday_median | 13_iir_weekday_median | 14_iir_weekday_median | 15_iir_weekday_median | 16_iir_weekday_median | 17_iir_weekday_median | 18_iir_weekday_median | 19_iir_weekday_median | 20_iir_weekday_median | 21_iir_weekday_median | 22_iir_weekday_median | 23_iir_weekday_median | 24_iir_weekday_median | 25_iir_weekday_median | 26_iir_weekday_median | 27_iir_weekday_median | 28_iir_weekday_median | 29_iir_weekday_median | 30_iir_weekday_median | 31_iir_weekday_median | 32_iir_weekday_median | 33_iir_weekday_median | 34_iir_weekday_median | 35_iir_weekday_median | 36_iir_weekday_median | 37_iir_weekday_median | 38_iir_weekday_median | 39_iir_weekday_median | 40_iir_weekday_median | 41_iir_weekday_median | 42_iir_weekday_median | 43_iir_weekday_median | 44_iir_weekday_median | 45_iir_weekday_median | 46_iir_weekday_median | 47_iir_weekday_median | 48_iir_weekday_median | 49_iir_weekday_median | 50_iir_weekday_median | 51_iir_weekday_median | 52_iir_weekday_median | 53_iir_weekday_median | 54_iir_weekday_median | 55_iir_weekday_median | 56_iir_weekday_median | 57_iir_weekday_median | 58_iir_weekday_median | 59_iir_weekday_median | 60_iir_weekday_median | 61_iir_weekday_median | 62_iir_weekday_median | 63_iir_weekday_median | 64_iir_weekday_median | 65_iir_weekday_median | 66_iir_weekday_median | 67_iir_weekday_median | 68_iir_weekday_median | 69_iir_weekday_median | 70_iir_weekday_median | 71_iir_weekday_median | 72_iir_weekday_median | 73_iir_weekday_median | 74_iir_weekday_median | 75_iir_weekday_median | 76_iir_weekday_median | 77_iir_weekday_median | 78_iir_weekday_median | 0_weekday_std | 1_weekday_std | 2_weekday_std | 3_weekday_std | 4_weekday_std | 5_weekday_std | 6_weekday_std | 7_weekday_std | 8_weekday_std | 9_weekday_std | 10_weekday_std | 11_weekday_std | 12_weekday_std | 13_weekday_std | 14_weekday_std | 15_weekday_std | 16_weekday_std | 17_weekday_std | 18_weekday_std | 19_weekday_std | 20_weekday_std | 21_weekday_std | 22_weekday_std | 23_weekday_std | 24_weekday_std | 25_weekday_std | 26_weekday_std | 27_weekday_std | 28_weekday_std | 29_weekday_std | 30_weekday_std | 31_weekday_std | 32_weekday_std | 33_weekday_std | 34_weekday_std | 35_weekday_std | 36_weekday_std | 37_weekday_std | 38_weekday_std | 39_weekday_std | 40_weekday_std | 41_weekday_std | 42_weekday_std | 43_weekday_std | 44_weekday_std | 45_weekday_std | 46_weekday_std | 47_weekday_std | 48_weekday_std | 49_weekday_std | 50_weekday_std | 51_weekday_std | 52_weekday_std | 53_weekday_std | 54_weekday_std | 55_weekday_std | 56_weekday_std | 57_weekday_std | 58_weekday_std | 59_weekday_std | 60_weekday_std | 61_weekday_std | 62_weekday_std | 63_weekday_std | 64_weekday_std | 65_weekday_std | 66_weekday_std | 67_weekday_std | 68_weekday_std | 69_weekday_std | 70_weekday_std | 71_weekday_std | 72_weekday_std | 73_weekday_std | 74_weekday_std | 75_weekday_std | 76_weekday_std | 77_weekday_std | 78_weekday_std | HourlyAltimeterSetting_weekday_std | HourlyPressureTendency_weekday_std | HourlyVisibility_weekday_std | HourlyStationPressure_weekday_std | predict_weather_weekday_std | Wind Chill Index_weekday_std | discomfort index_weekday_std | 0_iir_weekday_std | 1_iir_weekday_std | 2_iir_weekday_std | 3_iir_weekday_std | 4_iir_weekday_std | 5_iir_weekday_std | 6_iir_weekday_std | 7_iir_weekday_std | 8_iir_weekday_std | 9_iir_weekday_std | 10_iir_weekday_std | 11_iir_weekday_std | 12_iir_weekday_std | 13_iir_weekday_std | 14_iir_weekday_std | 15_iir_weekday_std | 16_iir_weekday_std | 17_iir_weekday_std | 18_iir_weekday_std | 19_iir_weekday_std | 20_iir_weekday_std | 21_iir_weekday_std | 22_iir_weekday_std | 23_iir_weekday_std | 24_iir_weekday_std | 25_iir_weekday_std | 26_iir_weekday_std | 27_iir_weekday_std | 28_iir_weekday_std | 29_iir_weekday_std | 30_iir_weekday_std | 31_iir_weekday_std | 32_iir_weekday_std | 33_iir_weekday_std | 34_iir_weekday_std | 35_iir_weekday_std | 36_iir_weekday_std | 37_iir_weekday_std | 38_iir_weekday_std | 39_iir_weekday_std | 40_iir_weekday_std | 41_iir_weekday_std | 42_iir_weekday_std | 43_iir_weekday_std | 44_iir_weekday_std | 45_iir_weekday_std | 46_iir_weekday_std | 47_iir_weekday_std | 48_iir_weekday_std | 49_iir_weekday_std | 50_iir_weekday_std | 51_iir_weekday_std | 52_iir_weekday_std | 53_iir_weekday_std | 54_iir_weekday_std | 55_iir_weekday_std | 56_iir_weekday_std | 57_iir_weekday_std | 58_iir_weekday_std | 59_iir_weekday_std | 60_iir_weekday_std | 61_iir_weekday_std | 62_iir_weekday_std | 63_iir_weekday_std | 64_iir_weekday_std | 65_iir_weekday_std | 66_iir_weekday_std | 67_iir_weekday_std | 68_iir_weekday_std | 69_iir_weekday_std | 70_iir_weekday_std | 71_iir_weekday_std | 72_iir_weekday_std | 73_iir_weekday_std | 74_iir_weekday_std | 75_iir_weekday_std | 76_iir_weekday_std | 77_iir_weekday_std | 78_iir_weekday_std | HourlyAltimeterSetting_diff | HourlyAltimeterSetting_shift | HourlyAltimeterSetting_ewm_mean24 | HourlyPressureTendency_diff | HourlyPressureTendency_shift | HourlyPressureTendency_ewm_mean24 | HourlyVisibility_diff | HourlyVisibility_shift | HourlyVisibility_ewm_mean24 | HourlyStationPressure_diff | HourlyStationPressure_shift | HourlyStationPressure_ewm_mean24 | predict_weather_diff | predict_weather_shift | predict_weather_ewm_mean24 | Wind Chill Index_diff | Wind Chill Index_shift | Wind Chill Index_ewm_mean24 | discomfort index_diff | discomfort index_shift | discomfort index_ewm_mean24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
index | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2017-11-01 00:00:00 | 19.630871 | 9.533048 | 14.638592 | 9.091916 | 6.762926 | 1.363106 | 1.153912 | 11.575677 | 5.600327 | 14.047530 | 9.710434 | 164.716842 | 54.031829 | 2.571881 | 4.211153 | 2.83912 | 101.895509 | 16.569052 | 13.414603 | 268.639058 | 31.971167 | 10.674007 | 84.993039 | 4.491674 | 78.046596 | 117.705877 | 115.647979 | 131.118541 | 9.294790 | 35.596065 | 3.263226 | 73.055851 | 32.959710 | 2.276816 | 23.747557 | 57.005938 | 69.931318 | 13.375071 | 56.143313 | 8.703673 | 2.265867 | 165.952527 | 17.545353 | 3.980137 | 69.831221 | 137.588645 | 104.499568 | 78.617384 | 100.058711 | 11.709989 | 74.838150 | 2.516647 | 9.669708 | 84.187922 | 1.146313 | 5.691702 | 34.825164 | 1.471723 | 4.332746 | 7.617384 | 57.660599 | 177.234465 | 59.637243 | 15.451669 | 21.123475 | 154.132718 | 30.258532 | 65.249825 | 28.101145 | 58.644200 | 6.130055 | 89.479913 | 217.272291 | 14.053291 | 9.862250 | 4.305671 | 16.443310 | 9.341917 | 41.656190 | 0 | 0 | 2 | 30.265625 | 1.0 | 10.00000 | 30.234375 | 0.0 | 73.883750 | 29.8684 | 7.000000 | 5.958155 | 14.638592 | 6.061277 | 3.416991 | 2.284799 | 0.682952 | 10.748843 | 4.800280 | 19.005482 | 8.100564 | 134.148453 | 23.053580 | 0.733785 | 3.609560 | 0.720526 | 88.000000 | 11.046035 | 12.000000 | 143.396928 | 19.843560 | 10.674007 | 46.359840 | 5.133341 | 67.000000 | 72.164912 | 46.687441 | 70.818035 | 4.000000 | 14.375334 | 1.957936 | 136.718806 | 32.959710 | 53.109078 | 29.109908 | 38.747417 | 70.683267 | 13.375071 | 40.894512 | 7.000000 | 3.398801 | 84.537407 | 9.000000 | 2.388082 | 41.674711 | 161.727003 | 103.000000 | 89.742485 | 89.266443 | 12.546417 | 71.975242 | 1.590368 | 5.722184 | 94.806219 | 1.146313 | 9.000000 | 32.004410 | 1.471723 | 3.000000 | 6.347820 | 50.772066 | 191.769710 | 58.000000 | 6.000000 | 25.493849 | 109.339771 | 27.000000 | 57.490986 | 25.759382 | 37.000000 | 3.000000 | 33.378561 | 107.168089 | 7.728620 | 4.841480 | 2.233676 | 16.000000 | 7.784931 | 32.399259 | 30.078125 | 6.0 | 10.00000 | 30.046875 | 0.0 | 76.605781 | 31.725750 | 6.812325 | 3.613433 | 60.561766 | 16.963332 | 5.780486 | 6.523944 | 1.993679 | 19.661100 | 6.687963 | 101.293963 | 10.437159 | 209.278113 | 51.914271 | 2.527183 | 7.499510 | 3.843087 | 165.107756 | 16.459839 | 38.520193 | 147.026199 | 54.910851 | 31.584921 | 128.951668 | 5.428095 | 128.249691 | 156.316556 | 127.764145 | 88.687384 | 4.608434 | 43.528473 | 0.784273 | 234.821209 | 72.972481 | 161.851594 | 115.750912 | 153.160347 | 238.781465 | 77.750653 | 70.531697 | 6.360058 | 3.400005 | 53.421633 | 51.967426 | 5.703993 | 58.412778 | 397.668041 | 349.639183 | 261.508315 | 166.424462 | 47.071774 | 220.152425 | 1.007743 | 5.708137 | 219.951450 | 2.199258 | 13.766747 | 65.650559 | 1.519762 | 7.170791 | 4.954226 | 147.007846 | 316.353150 | 131.525287 | 7.378652 | 98.001887 | 272.022263 | 280.686968 | 378.072322 | 133.865885 | 189.197787 | 5.362518 | 117.691279 | 132.392976 | 3.251849 | 2.094318 | 1.109779 | 41.706529 | 68.952318 | 115.298576 | 4.318990 | 2.430129 | 5.353423 | 2.582437 | 1.729723 | 1.060597 | 0.560357 | 3.220471 | 2.239782 | 7.332757 | 2.481378 | 18.325497 | 11.194086 | 0.735992 | 1.698801 | 0.855863 | 25.293774 | 3.301843 | 3.185054 | 42.867719 | 7.214955 | 4.009135 | 15.729163 | 2.039918 | 15.208532 | 19.374623 | 20.498831 | 19.685791 | 3.209754 | 7.082907 | 1.106708 | 36.453047 | 5.624292 | 43.629394 | 4.282767 | 10.201292 | 16.171494 | 3.681661 | 9.421961 | 2.391430 | 1.821887 | 27.949547 | 4.278236 | 1.378694 | 11.015009 | 31.022528 | 17.402789 | 23.266369 | 24.772772 | 4.368602 | 19.361182 | 0.834436 | 2.788885 | 71.568613 | 2.347385 | 3.517227 | 5.051590 | 1.315393 | 1.392988 | 2.784744 | 8.554363 | 32.461553 | 10.809482 | 4.146019 | 5.624714 | 22.574820 | 12.218797 | 17.310230 | 7.581802 | 11.164934 | 1.581793 | 15.232069 | 35.572986 | 3.304188 | 2.637575 | 1.390295 | 6.799365 | 3.843431 | 6.733452 | 0.245657 | 3.087441 | 0.000000 | 0.245657 | 0.000 | 53.381135 | 10.258855 | 4.060750 | 1.971341 | 19.657810 | 5.008503 | 1.744624 | 2.471746 | 0.680596 | 6.516903 | 2.438405 | 34.462229 | 2.967343 | 60.203186 | 15.221727 | 0.744712 | 2.480358 | 1.329882 | 47.120374 | 6.058651 | 12.769574 | 52.384175 | 16.115732 | 10.506716 | 34.570038 | 1.868153 | 34.903034 | 43.438303 | 32.999136 | 26.331000 | 1.982006 | 12.540324 | 0.713816 | 71.625406 | 22.475277 | 59.310205 | 39.852946 | 47.657191 | 81.699140 | 26.473126 | 19.338311 | 2.013504 | 1.291394 | 32.353807 | 16.628825 | 1.738294 | 16.619283 | 129.939838 | 108.235983 | 83.201306 | 48.560970 | 15.961188 | 66.358147 | 0.584442 | 2.116180 | 65.627548 | 1.170491 | 4.666169 | 18.267248 | 0.499436 | 2.392719 | 1.613104 | 44.350427 | 89.868394 | 40.096036 | 4.065614 | 32.372260 | 76.830010 | 98.419365 | 124.990854 | 44.921268 | 59.715816 | 1.734268 | 35.778355 | 41.247539 | 2.975520 | 2.111134 | 0.903688 | 12.017478 | 23.680773 | 35.372281 | 0.000000 | 30.265625 | 30.265625 | 0.0 | 1.0 | 1.000000 | 0.00000 | 10.00000 | 10.000000 | 0.000000 | 30.234375 | 30.234375 | 0.0 | 0.0 | 0.000000e+00 | 0.000000 | 73.883750 | 73.883750 | 0.0000 | 29.8684 | 29.868400 |
2017-11-01 00:30:00 | 19.069989 | 16.087019 | 7.667834 | 8.334256 | 2.459246 | 0.681553 | 0.576956 | 6.614672 | 6.400373 | 6.610603 | 9.139232 | 146.167648 | 64.838195 | 0.000000 | 2.406373 | 1.41956 | 101.140727 | 9.468030 | 15.091428 | 233.291814 | 18.921711 | 6.671254 | 69.539759 | 4.491674 | 87.802420 | 74.967433 | 54.707726 | 116.393999 | 5.421961 | 27.381589 | 4.568517 | 99.147226 | 25.406443 | 0.569204 | 11.490753 | 36.483800 | 56.396224 | 12.588302 | 63.767713 | 5.538701 | 6.231135 | 177.251423 | 7.628414 | 2.388082 | 95.412955 | 79.656584 | 76.336564 | 57.108854 | 66.225909 | 11.709989 | 67.843931 | 1.887485 | 5.119257 | 65.985128 | 4.585251 | 2.439301 | 26.118873 | 2.207585 | 3.791153 | 2.539128 | 39.688464 | 132.355351 | 40.913922 | 7.725835 | 13.839518 | 116.440874 | 39.017581 | 33.027689 | 28.101145 | 36.557424 | 9.632944 | 99.225250 | 178.368806 | 8.848368 | 6.105202 | 1.845287 | 9.294045 | 4.670959 | 26.999382 | 0 | 30 | 2 | 30.265625 | 1.0 | 10.00000 | 30.234375 | 0.0 | 73.883750 | 29.8684 | 4.487056 | 6.374273 | 11.153213 | 4.000000 | 4.783787 | 1.000000 | 0.682952 | 6.614672 | 4.000000 | 9.000000 | 7.364149 | 91.000000 | 16.569761 | 0.733785 | 3.593468 | 0.720526 | 60.898049 | 8.751413 | 10.906421 | 101.572824 | 17.462333 | 9.000000 | 40.038043 | 3.833140 | 47.549997 | 50.445376 | 33.240138 | 55.258679 | 2.520965 | 9.094149 | 2.610581 | 90.426388 | 20.101195 | 3.415223 | 16.058048 | 33.443484 | 53.071557 | 7.080920 | 31.190729 | 4.346382 | 4.449256 | 71.324278 | 6.102731 | 1.000000 | 28.347327 | 116.668734 | 72.000000 | 61.558895 | 69.000000 | 9.200705 | 54.799332 | 1.590368 | 4.550451 | 58.000000 | 2.000000 | 4.878602 | 21.945881 | 2.207585 | 1.624780 | 4.000000 | 35.944270 | 132.355351 | 43.000000 | 7.131540 | 16.024705 | 78.749031 | 18.000000 | 45.000000 | 16.392334 | 23.610003 | 2.627167 | 26.000000 | 89.551417 | 6.245907 | 5.000000 | 2.000000 | 8.819529 | 6.066331 | 24.467173 | 30.078125 | 6.0 | 10.00000 | 30.046875 | 0.0 | 76.605781 | 31.725750 | 7.177127 | 3.673224 | 60.409898 | 16.291422 | 5.924348 | 6.335957 | 2.022818 | 18.369361 | 6.298144 | 93.404620 | 10.574198 | 218.760528 | 54.292040 | 2.541573 | 7.265506 | 3.733715 | 167.617887 | 15.893783 | 34.911045 | 159.126189 | 55.260473 | 31.215607 | 127.461289 | 5.913944 | 128.150411 | 159.326688 | 131.583907 | 95.327630 | 4.737899 | 42.892625 | 0.734305 | 229.455097 | 71.590343 | 160.116865 | 107.926646 | 146.128170 | 239.305648 | 72.406972 | 73.728616 | 5.958433 | 3.233025 | 59.807111 | 47.818451 | 5.554703 | 60.279948 | 399.419445 | 349.806774 | 263.750487 | 172.196681 | 43.981310 | 215.798577 | 1.020742 | 6.549607 | 218.335766 | 2.010536 | 13.996626 | 66.215968 | 1.467211 | 7.026849 | 4.879114 | 147.902689 | 327.276184 | 133.253772 | 7.723193 | 93.922663 | 272.998883 | 251.753258 | 357.712354 | 122.208302 | 179.936712 | 5.376025 | 111.901028 | 141.380420 | 3.781698 | 2.439408 | 1.063624 | 41.464532 | 61.404422 | 110.571357 | 4.669633 | 3.119958 | 3.408262 | 3.040583 | 1.931524 | 1.057201 | 0.800603 | 2.986684 | 1.390712 | 5.297561 | 2.106723 | 17.715646 | 13.277867 | 0.627507 | 1.891616 | 0.883024 | 15.926563 | 2.608835 | 3.635275 | 37.964275 | 5.227277 | 3.609391 | 14.074283 | 1.738031 | 14.755774 | 12.628790 | 10.577210 | 20.155681 | 1.944656 | 6.138198 | 1.004201 | 24.212018 | 6.121111 | 25.810354 | 4.425494 | 8.541496 | 14.060499 | 2.749339 | 10.539675 | 2.231391 | 1.812458 | 32.196111 | 1.905003 | 1.279252 | 20.794809 | 25.075494 | 14.559719 | 16.825223 | 14.422487 | 4.731966 | 10.089716 | 0.988460 | 2.852848 | 32.251328 | 1.570727 | 2.085949 | 5.436347 | 1.534330 | 1.243039 | 2.097329 | 7.469864 | 23.945672 | 7.778225 | 2.430423 | 5.040446 | 15.549835 | 10.484658 | 10.763650 | 6.687510 | 10.871090 | 2.378514 | 20.472649 | 29.864979 | 2.362531 | 1.880870 | 1.185014 | 3.461200 | 2.256493 | 7.561070 | 0.245657 | 3.087441 | 0.000000 | 0.245657 | 0.000 | 53.381135 | 10.258855 | 4.084469 | 1.980066 | 19.407660 | 4.674836 | 1.783516 | 2.401033 | 0.688289 | 5.994733 | 2.256427 | 32.127061 | 3.005440 | 63.138420 | 15.347990 | 0.716394 | 2.451342 | 1.306812 | 47.707193 | 5.507352 | 11.415195 | 53.356698 | 16.354345 | 10.315711 | 34.332506 | 2.086922 | 35.008205 | 44.528069 | 33.812556 | 27.217860 | 1.944798 | 12.461306 | 0.715953 | 70.351399 | 22.015509 | 59.212242 | 37.159228 | 45.477116 | 84.082096 | 24.652843 | 20.315041 | 2.005288 | 1.275216 | 31.864704 | 15.171052 | 1.600496 | 17.187449 | 131.458540 | 108.778129 | 83.495584 | 49.288884 | 14.859175 | 65.586593 | 0.582118 | 2.337555 | 66.727340 | 1.137216 | 4.843236 | 18.724453 | 0.503259 | 2.304902 | 1.556788 | 44.994993 | 93.766032 | 41.140846 | 4.344549 | 31.447995 | 76.994360 | 88.836966 | 119.749881 | 40.579613 | 56.773017 | 1.673140 | 34.520261 | 42.070286 | 2.942594 | 2.084044 | 0.907016 | 11.765339 | 21.152633 | 33.887238 | 0.000000 | 30.265625 | 30.265625 | 0.0 | 1.0 | 1.000000 | 0.00000 | 10.00000 | 10.000000 | 0.000000 | 30.234375 | 30.234375 | 0.0 | 0.0 | 0.000000e+00 | 0.000000 | 73.883750 | 73.883750 | 0.0000 | 29.8684 | 29.868400 |
2017-11-01 01:00:00 | 7.291466 | 12.512126 | 4.879531 | 14.395533 | 2.459246 | 2.726211 | 0.576956 | 9.095174 | 4.000233 | 4.131627 | 6.854424 | 129.102390 | 54.031829 | 0.000000 | 2.406373 | 2.12934 | 76.232936 | 7.890025 | 12.576190 | 188.754286 | 8.482146 | 8.672631 | 62.515541 | 1.925003 | 66.200238 | 68.661761 | 45.012686 | 126.210360 | 7.745659 | 19.851652 | 2.610581 | 85.579711 | 29.526407 | 0.000000 | 7.660502 | 25.082613 | 42.109180 | 11.014765 | 45.053276 | 10.286159 | 1.699400 | 174.426699 | 6.102731 | 2.388082 | 100.944141 | 73.219688 | 62.255062 | 53.400487 | 62.626675 | 10.037133 | 61.549133 | 1.887485 | 4.550451 | 44.748535 | 0.000000 | 0.813100 | 23.216776 | 2.943446 | 3.249559 | 1.904346 | 28.455880 | 115.620767 | 41.607379 | 7.725835 | 19.666684 | 101.633364 | 16.721820 | 19.333281 | 18.734096 | 29.702907 | 1.751444 | 101.883069 | 143.869490 | 9.368861 | 11.740774 | 1.845287 | 10.008971 | 6.227945 | 33.942081 | 1 | 0 | 2 | 30.265625 | 1.0 | 9.96875 | 30.234375 | 0.0 | 76.128438 | 29.8684 | 5.336062 | 4.957768 | 6.576574 | 1.692016 | 2.459246 | 1.363106 | 0.576956 | 6.000000 | 3.110876 | 7.000000 | 5.712020 | 79.989140 | 16.569761 | 0.000000 | 2.156081 | 0.720526 | 54.344271 | 7.101022 | 9.222539 | 89.075056 | 10.439565 | 8.672631 | 28.287822 | 1.925003 | 34.842230 | 38.534662 | 22.160092 | 45.000000 | 3.000000 | 8.214477 | 2.610581 | 47.000000 | 16.479855 | 1.000000 | 13.022854 | 22.802375 | 30.681994 | 6.000000 | 27.031965 | 6.000000 | 2.966171 | 57.841384 | 5.014197 | 1.662863 | 19.969133 | 80.000000 | 57.000000 | 46.000000 | 56.000000 | 8.831943 | 34.971098 | 0.795184 | 3.981644 | 50.057684 | 2.000000 | 4.906996 | 15.000000 | 0.886455 | 1.505981 | 3.000000 | 28.455880 | 104.971485 | 35.840997 | 4.754360 | 16.024705 | 52.499354 | 12.740435 | 23.361048 | 13.269985 | 16.728450 | 1.751444 | 19.818520 | 68.264605 | 3.643446 | 2.817786 | 1.230192 | 7.055623 | 3.892466 | 16.311449 | 30.078125 | 6.0 | 9.96875 | 30.039062 | 0.0 | 76.084531 | 31.535525 | 7.411480 | 3.646853 | 58.527455 | 15.238110 | 5.801298 | 6.053563 | 2.039721 | 17.190397 | 5.801083 | 83.987426 | 10.659872 | 225.996563 | 54.572055 | 2.405966 | 6.969360 | 3.483085 | 165.925943 | 15.017238 | 31.100931 | 169.933820 | 54.494490 | 30.437789 | 123.814074 | 6.632535 | 124.979979 | 158.475324 | 132.135697 | 101.553626 | 4.901391 | 41.481771 | 0.686989 | 221.719451 | 67.496367 | 158.700032 | 97.945010 | 136.731850 | 237.392514 | 65.370564 | 75.638403 | 5.785081 | 3.127972 | 66.413158 | 42.922250 | 5.132299 | 62.096531 | 402.555765 | 344.274465 | 257.538545 | 177.855036 | 40.355261 | 209.087054 | 1.102327 | 7.256198 | 218.095040 | 1.878252 | 14.031242 | 65.801154 | 1.499854 | 6.748099 | 4.755293 | 145.307373 | 336.184488 | 133.064941 | 8.106709 | 88.500092 | 270.440085 | 222.479504 | 331.725934 | 109.709381 | 170.168598 | 5.061405 | 104.343067 | 148.843818 | 4.247073 | 2.849307 | 1.070010 | 40.614803 | 52.834720 | 104.411905 | 2.118678 | 2.652052 | 2.368259 | 3.978637 | 1.419644 | 1.129356 | 0.605256 | 2.719702 | 1.598493 | 5.357705 | 3.224847 | 18.137113 | 11.317850 | 0.439828 | 1.488770 | 0.663909 | 10.690479 | 2.104072 | 3.163848 | 32.857574 | 5.282060 | 2.825615 | 11.255008 | 1.701591 | 10.801967 | 11.796006 | 7.744168 | 23.061311 | 1.792393 | 5.566815 | 1.657796 | 24.501350 | 5.576817 | 9.067033 | 4.248906 | 7.515598 | 8.991756 | 2.386963 | 7.348396 | 2.406475 | 1.664901 | 33.922943 | 2.151369 | 1.334445 | 22.015302 | 17.454763 | 11.838866 | 11.212881 | 14.840228 | 3.505194 | 10.385094 | 1.094150 | 2.392132 | 16.512009 | 2.050707 | 1.762254 | 5.503875 | 0.966047 | 1.201582 | 1.473463 | 5.938743 | 22.725300 | 6.595566 | 1.647771 | 4.757105 | 15.788681 | 5.446195 | 8.050606 | 5.664092 | 7.922753 | 1.037095 | 21.770867 | 22.821054 | 2.488838 | 2.605973 | 0.764248 | 1.725744 | 1.659719 | 7.706292 | 0.245652 | 2.768875 | 0.008263 | 0.245995 | 0.000 | 54.882958 | 10.194632 | 4.094081 | 1.986260 | 18.755253 | 4.285285 | 1.828604 | 2.292014 | 0.683603 | 5.452559 | 2.068873 | 29.619193 | 3.040174 | 65.016663 | 15.392396 | 0.694105 | 2.402194 | 1.263851 | 47.457965 | 4.964567 | 10.021149 | 54.340083 | 16.289713 | 9.956939 | 33.464466 | 2.317121 | 34.566038 | 44.808006 | 34.019279 | 28.122155 | 1.899530 | 12.175304 | 0.715204 | 68.480961 | 21.116189 | 58.682217 | 33.885740 | 42.472892 | 85.178699 | 22.533067 | 20.987211 | 2.007152 | 1.295266 | 31.623916 | 13.496401 | 1.470379 | 17.599115 | 130.176343 | 107.053098 | 82.426902 | 49.397197 | 13.568566 | 63.620094 | 0.581743 | 2.636312 | 67.270182 | 1.103216 | 4.952446 | 18.818554 | 0.509946 | 2.174106 | 1.521903 | 44.460922 | 96.202894 | 41.361280 | 4.587374 | 29.874527 | 75.661821 | 78.093105 | 112.617291 | 35.706799 | 52.979476 | 1.610867 | 32.603828 | 42.917220 | 2.922943 | 2.056975 | 0.910995 | 11.414417 | 18.282907 | 31.782920 | 0.000000 | 30.265625 | 30.265625 | 0.0 | 1.0 | 1.000000 | -0.03125 | 10.00000 | 9.989146 | 0.000000 | 30.234375 | 30.234375 | 0.0 | 0.0 | 0.000000e+00 | 2.244687 | 73.883750 | 74.663367 | 0.0000 | 29.8684 | 29.868400 |
2017-11-01 01:30:00 | 8.413230 | 11.916310 | 4.879531 | 4.545958 | 1.229623 | 1.363106 | 0.000000 | 7.441506 | 4.000233 | 7.436928 | 6.854424 | 107.585325 | 39.623341 | 0.000000 | 1.203187 | 0.70978 | 70.949465 | 9.468030 | 6.707301 | 190.875120 | 10.439565 | 12.008258 | 61.110698 | 3.850006 | 63.412859 | 56.751048 | 42.242675 | 95.358939 | 5.421961 | 21.905271 | 2.610581 | 14.611170 | 21.286479 | 0.000000 | 9.958653 | 28.122929 | 30.077986 | 2.360307 | 58.915822 | 5.538701 | 1.699400 | 124.287850 | 3.051366 | 1.592055 | 87.116176 | 65.978180 | 42.985638 | 32.633631 | 50.389279 | 9.200705 | 56.653179 | 0.629162 | 3.412838 | 29.579540 | 2.292626 | 4.065501 | 15.236009 | 2.207585 | 4.874339 | 3.808692 | 39.688464 | 93.561541 | 34.672816 | 4.160065 | 8.012353 | 75.383687 | 7.166494 | 23.361048 | 21.856446 | 22.848390 | 2.627167 | 118.715924 | 105.700033 | 8.327876 | 5.165941 | 1.845287 | 1.429853 | 7.006438 | 25.456561 | 1 | 30 | 2 | 30.265625 | 1.0 | 9.96875 | 30.234375 | 0.0 | 76.128438 | 29.8684 | 2.804410 | 5.000000 | 4.182455 | 3.000000 | 1.844434 | 0.681553 | 0.576956 | 5.050085 | 3.000000 | 4.000000 | 3.682074 | 57.873485 | 8.011371 | 0.000000 | 1.437387 | 0.000000 | 48.541923 | 5.523017 | 5.868889 | 62.211150 | 9.524909 | 5.000000 | 28.000000 | 1.000000 | 28.570629 | 30.127099 | 17.000000 | 42.978973 | 1.680643 | 6.613927 | 2.161321 | 13.567515 | 13.046552 | 0.569204 | 8.426552 | 19.785915 | 14.097132 | 3.147076 | 21.000000 | 3.477106 | 2.224628 | 55.171781 | 3.814207 | 0.831432 | 15.000000 | 58.128550 | 41.503374 | 28.925264 | 48.229738 | 7.000000 | 25.000000 | 1.258323 | 2.861092 | 33.000000 | 1.146313 | 3.252401 | 12.333912 | 0.735862 | 1.083186 | 2.347716 | 25.816305 | 81.390934 | 24.437043 | 3.565770 | 10.158263 | 34.528349 | 7.166494 | 16.916621 | 9.367048 | 12.947421 | 1.000000 | 13.560040 | 50.827203 | 2.602461 | 2.766560 | 1.489117 | 5.291718 | 5.000000 | 17.942594 | 30.078125 | 6.0 | 9.96875 | 30.039062 | 0.0 | 76.084531 | 31.535525 | 7.566440 | 3.700916 | 54.747252 | 13.794543 | 5.731596 | 5.757900 | 1.995886 | 16.018645 | 5.535998 | 74.253291 | 10.493181 | 229.473439 | 53.335842 | 2.162424 | 6.586291 | 3.312282 | 161.760282 | 14.251683 | 26.972510 | 178.615887 | 52.930564 | 29.195240 | 118.386181 | 7.134580 | 120.332706 | 156.327402 | 130.216924 | 104.730222 | 5.013289 | 39.266000 | 0.699454 | 212.740545 | 63.122744 | 153.541697 | 86.124897 | 125.180315 | 231.920591 | 58.500870 | 75.710942 | 5.539992 | 3.173592 | 72.718422 | 37.509006 | 4.938602 | 63.324012 | 396.558796 | 329.534643 | 246.880862 | 180.953363 | 35.896514 | 200.194845 | 1.196804 | 7.804705 | 215.635640 | 1.857854 | 14.018950 | 64.250192 | 1.513089 | 6.369277 | 4.566935 | 139.517565 | 340.906721 | 130.889526 | 8.347082 | 82.773225 | 260.397612 | 191.514438 | 300.468531 | 95.843435 | 157.985457 | 4.610282 | 95.198594 | 155.264397 | 4.865964 | 3.309221 | 1.069669 | 37.678445 | 44.949772 | 96.871311 | 2.250497 | 2.840966 | 1.897991 | 1.584091 | 1.766886 | 0.852345 | 0.697942 | 1.527358 | 1.928179 | 2.603047 | 1.954817 | 14.696750 | 8.432761 | 0.561778 | 1.131724 | 0.249747 | 13.159646 | 2.538183 | 1.519391 | 38.006659 | 4.375719 | 2.739006 | 11.520127 | 2.249399 | 11.198333 | 10.341492 | 9.076983 | 18.835821 | 2.096981 | 5.013329 | 1.309138 | 11.094320 | 4.538536 | 4.246720 | 2.664030 | 5.478877 | 5.870484 | 2.040409 | 10.548178 | 1.796251 | 1.393580 | 23.808583 | 2.129047 | 1.207267 | 19.341031 | 10.461432 | 8.200582 | 5.440951 | 9.062955 | 2.539056 | 9.777433 | 1.005192 | 1.750306 | 9.684852 | 1.937451 | 1.705209 | 4.411523 | 1.000868 | 1.451649 | 1.869141 | 5.688900 | 10.722726 | 7.165825 | 1.204352 | 3.979095 | 12.913281 | 4.960964 | 4.235129 | 4.766421 | 5.534498 | 1.649029 | 27.661335 | 19.262704 | 1.951593 | 1.320950 | 0.957830 | 2.691908 | 2.565489 | 7.741218 | 0.245652 | 2.768875 | 0.008263 | 0.245995 | 0.000 | 54.882958 | 10.194632 | 4.083466 | 1.994097 | 17.693084 | 3.861216 | 1.866369 | 2.143581 | 0.667863 | 4.922167 | 1.889129 | 26.901569 | 3.062384 | 65.484669 | 15.340634 | 0.677295 | 2.329221 | 1.199515 | 46.258625 | 4.470981 | 8.644394 | 55.043732 | 15.898005 | 9.434580 | 31.956891 | 2.534001 | 33.528386 | 44.104164 | 33.488971 | 28.854654 | 1.852891 | 11.681912 | 0.711404 | 65.916616 | 19.798099 | 57.494762 | 30.136479 | 38.742124 | 84.511333 | 20.156398 | 21.229036 | 2.014296 | 1.350221 | 31.661626 | 11.688722 | 1.358393 | 17.787470 | 125.881396 | 102.878312 | 79.835641 | 48.746732 | 12.124339 | 60.386819 | 0.585279 | 2.974930 | 67.085894 | 1.065850 | 4.972793 | 18.492712 | 0.515741 | 2.009611 | 1.503878 | 42.701782 | 96.685148 | 40.625571 | 4.758492 | 27.693265 | 72.701577 | 66.558887 | 103.573109 | 30.521772 | 48.358791 | 1.559126 | 30.126215 | 43.562663 | 2.912410 | 2.028676 | 0.912588 | 10.934360 | 15.232113 | 29.118183 | 0.000000 | 30.265625 | 30.265625 | 0.0 | 1.0 | 1.000000 | 0.00000 | 9.96875 | 9.983724 | 0.000000 | 30.234375 | 30.234375 | 0.0 | 0.0 | 0.000000e+00 | 0.000000 | 76.128438 | 75.052838 | 0.0000 | 29.8684 | 29.868400 |
2017-11-01 02:00:00 | 8.974112 | 11.916310 | 4.879531 | 8.334256 | 1.844434 | 0.000000 | 0.576956 | 8.268340 | 1.600093 | 3.305301 | 1.713606 | 103.133518 | 36.741644 | 0.000000 | 1.804780 | 0.00000 | 89.819004 | 7.890025 | 9.222539 | 178.150112 | 5.872255 | 2.001376 | 54.086480 | 1.925003 | 51.566501 | 39.935922 | 24.237600 | 75.726216 | 0.774566 | 28.750668 | 6.526453 | 24.004065 | 21.286479 | 0.000000 | 9.958653 | 22.802375 | 18.798741 | 3.933844 | 44.360148 | 0.791243 | 0.566467 | 132.762022 | 8.391256 | 0.796027 | 80.893592 | 44.253658 | 40.021111 | 28.925264 | 48.229738 | 12.546417 | 64.346821 | 1.258323 | 5.119257 | 40.197837 | 0.000000 | 2.439301 | 10.882864 | 2.207585 | 4.332746 | 4.443474 | 17.223296 | 76.066294 | 34.672816 | 8.914425 | 13.111123 | 51.153216 | 7.166494 | 11.277748 | 9.367048 | 19.040325 | 2.627167 | 112.514346 | 86.615305 | 3.122954 | 5.165941 | 2.460383 | 4.289559 | 3.892466 | 30.085026 | 2 | 0 | 2 | 30.265625 | 1.0 | 10.00000 | 30.234375 | 0.0 | 57.798438 | 28.6146 | 2.804410 | 4.249516 | 4.110359 | 2.538024 | 1.366796 | 0.000000 | 0.000000 | 4.000000 | 1.000000 | 3.000000 | 2.000000 | 47.493552 | 9.000000 | 0.000000 | 1.000000 | 0.000000 | 39.000000 | 4.773498 | 5.000000 | 53.020867 | 5.872255 | 4.000000 | 21.775076 | 1.533256 | 20.208494 | 21.018907 | 11.772549 | 33.330632 | 1.549132 | 5.000000 | 1.957936 | 13.994560 | 6.958106 | 0.000000 | 8.451604 | 18.137089 | 11.609403 | 1.620370 | 20.100692 | 2.373729 | 1.483085 | 54.281914 | 5.000000 | 1.000000 | 13.891570 | 36.207538 | 28.163004 | 20.766856 | 36.211859 | 5.299166 | 19.629612 | 0.629162 | 1.430546 | 29.270012 | 2.000000 | 2.439301 | 6.400882 | 0.000000 | 1.000000 | 2.000000 | 17.223296 | 59.331709 | 19.549635 | 2.000000 | 8.012353 | 32.307295 | 7.000000 | 13.000000 | 6.000000 | 9.900969 | 1.751444 | 12.516960 | 41.350945 | 2.602461 | 1.408893 | 1.230192 | 3.000000 | 2.599856 | 13.864732 | 30.070312 | 6.0 | 10.00000 | 30.039062 | 0.0 | 67.085781 | 32.138800 | 7.623891 | 3.838103 | 50.677681 | 12.522527 | 5.629741 | 5.411441 | 1.891077 | 14.878332 | 5.172496 | 64.315136 | 10.277263 | 229.174137 | 49.152762 | 1.957216 | 6.071581 | 3.065631 | 155.504897 | 13.083337 | 22.918905 | 183.482882 | 49.609784 | 27.424710 | 111.486555 | 7.500137 | 116.182659 | 150.831221 | 125.283361 | 106.791120 | 4.907870 | 37.174398 | 0.737041 | 201.475746 | 57.979190 | 145.124601 | 73.908771 | 111.879336 | 222.070894 | 51.260955 | 74.822859 | 5.419796 | 2.969098 | 77.926847 | 31.780413 | 4.413440 | 62.981631 | 378.022081 | 306.365678 | 229.516714 | 172.910749 | 31.291717 | 186.410404 | 1.296558 | 8.185559 | 209.863539 | 1.877705 | 14.002760 | 61.641149 | 1.541298 | 5.952273 | 4.548556 | 131.566728 | 338.494060 | 126.088991 | 8.595005 | 75.376466 | 246.099752 | 158.632250 | 264.843327 | 82.403280 | 142.957519 | 4.402927 | 88.711735 | 158.334957 | 5.525173 | 3.685887 | 1.004268 | 34.477197 | 36.269999 | 87.827547 | 2.501147 | 2.581356 | 2.096463 | 2.105744 | 0.802401 | 0.643645 | 0.347246 | 1.884938 | 1.293774 | 1.791965 | 1.118115 | 16.319405 | 7.979958 | 0.258199 | 1.052411 | 0.443073 | 14.557981 | 2.031319 | 2.079579 | 34.917999 | 2.380401 | 2.205423 | 10.682305 | 1.338823 | 9.165483 | 8.944181 | 5.208558 | 13.403606 | 0.783019 | 7.244450 | 1.543119 | 9.992083 | 4.569121 | 2.618109 | 3.027660 | 6.335952 | 7.529225 | 1.680278 | 8.289973 | 2.485316 | 1.468537 | 25.488594 | 2.328085 | 1.022051 | 18.690544 | 12.248617 | 5.117044 | 4.270270 | 8.423477 | 2.893266 | 12.577188 | 0.565091 | 1.783945 | 11.980745 | 1.417582 | 1.293873 | 2.838739 | 0.731457 | 1.231795 | 1.423292 | 7.055241 | 8.895886 | 8.905031 | 2.260565 | 3.563234 | 7.837115 | 2.278244 | 3.379612 | 2.423987 | 5.065405 | 1.305678 | 26.178879 | 18.586999 | 1.261183 | 1.746166 | 1.045527 | 2.293527 | 1.522163 | 6.833743 | 0.246715 | 2.768875 | 0.000000 | 0.249340 | 0.000 | 53.095712 | 9.726285 | 4.045171 | 2.008602 | 16.252180 | 3.426468 | 1.885110 | 1.956872 | 0.642361 | 4.424425 | 1.726492 | 23.977728 | 3.060553 | 64.322556 | 15.144152 | 0.660954 | 2.229866 | 1.115092 | 44.092166 | 4.047575 | 7.338340 | 55.217395 | 15.189029 | 8.762154 | 29.865417 | 2.712241 | 31.895536 | 42.354082 | 32.171921 | 29.229286 | 1.810597 | 10.999881 | 0.704804 | 62.548345 | 18.119293 | 55.441171 | 26.059891 | 34.460280 | 81.785205 | 17.590967 | 20.958738 | 2.020377 | 1.427631 | 31.923880 | 9.845855 | 1.268807 | 17.712430 | 118.704687 | 96.296133 | 75.665435 | 47.261842 | 10.570812 | 55.940143 | 0.591690 | 3.304280 | 66.006864 | 1.023545 | 4.888426 | 17.732908 | 0.518833 | 1.823744 | 1.495636 | 39.801206 | 94.904825 | 38.891947 | 4.825595 | 24.996964 | 68.144561 | 54.703607 | 92.800528 | 25.265806 | 43.041276 | 1.525013 | 27.271762 | 43.784309 | 2.900708 | 1.997454 | 0.906293 | 10.307699 | 12.175559 | 26.009063 | 0.000000 | 30.265625 | 30.265625 | 0.0 | 1.0 | 1.000000 | 0.03125 | 9.96875 | 9.987256 | 0.000000 | 30.234375 | 30.234375 | 0.0 | 0.0 | 0.000000e+00 | -18.330000 | 76.128438 | 71.308523 | -1.2538 | 29.8684 | 29.596317 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2019-12-07 21:30:00 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 21 | 30 | 5 | 30.484375 | 1.0 | 10.00000 | 30.453125 | 0.0 | 23.237500 | 20.0244 | 15.143815 | 4.766524 | 32.882871 | 15.228144 | 4.100389 | 2.726211 | 1.730868 | 18.000000 | 6.221752 | 54.537471 | 13.137646 | 252.000000 | 60.000000 | 1.285941 | 4.812746 | 1.000000 | 187.000000 | 15.116078 | 25.152380 | 312.000000 | 36.000000 | 17.537587 | 137.000000 | 5.775009 | 107.314069 | 162.197857 | 139.000000 | 152.619209 | 6.722573 | 30.000000 | 1.305291 | 209.918401 | 69.000000 | 77.310683 | 54.935426 | 140.614647 | 279.000000 | 57.434130 | 87.551181 | 6.000000 | 5.000000 | 110.000000 | 37.379230 | 4.157158 | 83.349423 | 225.291348 | 156.000000 | 171.326562 | 143.163163 | 26.000000 | 162.000000 | 1.000000 | 5.722184 | 306.004674 | 2.141729 | 15.538822 | 62.000000 | 1.772909 | 8.665491 | 4.443474 | 109.330487 | 296.050013 | 99.857709 | 9.502512 | 59.256536 | 209.997415 | 168.810759 | 210.505455 | 95.131147 | 177.321569 | 4.000000 | 85.050214 | 220.208403 | 5.725415 | 4.149840 | 1.489117 | 21.166870 | 34.664748 | 124.782584 | 30.195312 | 5.0 | 10.00000 | 30.164062 | 0.0 | 65.841094 | 30.751250 | 9.052370 | 5.440333 | 59.443461 | 20.502804 | 6.193341 | 5.048492 | 1.982607 | 25.418459 | 8.450384 | 162.050339 | 13.072693 | 189.663639 | 52.205876 | 2.471854 | 7.623013 | 3.706977 | 170.196931 | 24.098572 | 42.792800 | 191.609437 | 42.211998 | 20.230873 | 128.263105 | 4.700467 | 106.856035 | 153.021457 | 111.215085 | 104.021585 | 5.034019 | 33.552994 | 1.682664 | 221.081091 | 70.947196 | 101.352568 | 100.270047 | 182.128458 | 264.441488 | 83.510884 | 91.712922 | 7.613425 | 4.746588 | 73.204422 | 73.536095 | 6.018767 | 73.806427 | 281.589944 | 214.972715 | 197.787852 | 150.393358 | 35.297453 | 181.171173 | 1.365354 | 4.609733 | 201.800758 | 3.290403 | 15.513160 | 81.399646 | 1.787690 | 9.662406 | 6.306175 | 118.334566 | 209.879873 | 100.392137 | 9.425974 | 69.356812 | 208.090567 | 304.361107 | 357.714324 | 139.394218 | 228.249232 | 3.741590 | 135.157053 | 146.334212 | 5.159837 | 2.935195 | 1.776606 | 64.573397 | 74.823527 | 145.025046 | 4.617098 | 3.212586 | 8.838778 | 4.436250 | 1.924586 | 1.940448 | 1.166924 | 6.027067 | 2.155848 | 11.387804 | 3.586257 | 33.931908 | 14.954970 | 1.102353 | 1.632474 | 1.109457 | 28.605782 | 3.735566 | 3.993455 | 56.901800 | 5.009636 | 3.759054 | 24.583633 | 3.000734 | 10.407894 | 37.351058 | 16.726679 | 27.956890 | 2.999364 | 8.420196 | 1.506076 | 46.906630 | 14.763779 | 47.654584 | 9.273279 | 18.251613 | 48.319501 | 15.172744 | 13.392400 | 3.186722 | 2.098555 | 18.662944 | 9.758628 | 2.121045 | 15.011152 | 34.792679 | 19.733210 | 31.601021 | 16.008673 | 6.941368 | 30.010404 | 1.297253 | 3.134160 | 69.540156 | 2.533020 | 5.121533 | 11.751809 | 0.766467 | 3.623758 | 4.225800 | 16.360911 | 49.539088 | 17.649156 | 3.710063 | 10.047756 | 25.933080 | 20.326067 | 29.212496 | 20.957968 | 38.617742 | 2.440789 | 20.825108 | 31.170621 | 2.712410 | 1.918982 | 0.903794 | 5.507427 | 7.810228 | 18.232376 | 0.303077 | 2.708013 | 1.750000 | 0.300275 | 0.125 | 41.597169 | 8.807733 | 3.270987 | 1.611347 | 16.141493 | 6.327562 | 2.279893 | 2.029192 | 0.859213 | 8.247384 | 2.534963 | 43.201850 | 4.036056 | 49.110672 | 14.593410 | 0.901528 | 2.479744 | 1.486492 | 43.799469 | 7.588032 | 12.697518 | 56.265916 | 12.030314 | 5.446730 | 36.163396 | 1.576728 | 31.496239 | 44.176430 | 28.872337 | 28.244060 | 2.497499 | 10.019020 | 0.577504 | 59.715593 | 20.139069 | 44.879933 | 28.443790 | 49.972502 | 70.313657 | 23.940404 | 24.656639 | 3.278115 | 1.781496 | 21.573311 | 21.041474 | 2.062393 | 21.709586 | 80.560173 | 54.460683 | 56.047363 | 39.218908 | 11.887887 | 47.618991 | 0.552633 | 1.690466 | 62.101526 | 1.002735 | 4.526235 | 21.476252 | 0.778026 | 3.398777 | 2.036579 | 31.296437 | 55.555031 | 28.585003 | 3.190417 | 18.430979 | 54.814548 | 83.435006 | 98.065816 | 40.073196 | 60.586610 | 2.335469 | 42.481910 | 42.523720 | 2.298634 | 1.392703 | 0.582310 | 18.068063 | 21.461906 | 41.697856 | 0.000000 | 30.484375 | 30.327043 | 0.0 | 1.0 | 2.667750 | 0.00000 | 10.00000 | 9.989593 | 0.000000 | 30.453125 | 30.295792 | 0.0 | 0.0 | 4.697910e-07 | 0.000000 | 23.237500 | 44.370579 | 0.0000 | 20.0244 | 22.386471 |
2019-12-07 22:00:00 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 22 | 0 | 5 | 30.500000 | 1.0 | 9.96875 | 30.468750 | 0.0 | 23.904375 | 19.7997 | 15.704697 | 5.362340 | 30.416656 | 14.000000 | 5.467185 | 4.089317 | 0.682952 | 21.497685 | 5.000000 | 61.446784 | 14.280050 | 267.108392 | 55.000000 | 0.733785 | 4.312162 | 2.161579 | 170.338020 | 14.000000 | 28.506030 | 338.007044 | 35.718408 | 15.943260 | 128.127194 | 5.775009 | 112.191981 | 168.589891 | 128.178248 | 164.073468 | 5.882252 | 32.173367 | 1.000000 | 176.546758 | 74.992919 | 72.000000 | 59.161228 | 144.272298 | 390.573487 | 67.662125 | 88.426693 | 6.084935 | 4.531735 | 119.000000 | 43.481961 | 5.820021 | 90.573167 | 241.889772 | 148.000000 | 180.226644 | 167.004467 | 24.256405 | 153.872832 | 1.590368 | 5.000000 | 217.307667 | 1.146313 | 14.000000 | 65.297182 | 2.000000 | 8.282897 | 5.078256 | 117.000000 | 308.000000 | 108.337559 | 13.000000 | 62.642624 | 220.000000 | 163.000000 | 237.638252 | 88.986958 | 185.833570 | 5.254333 | 91.791042 | 249.569523 | 6.245907 | 4.000000 | 1.230192 | 24.307501 | 34.664748 | 133.753881 | 30.199219 | 5.0 | 9.96875 | 30.164062 | 0.0 | 65.811094 | 31.288225 | 9.717545 | 5.497500 | 57.410850 | 20.817876 | 6.229760 | 5.185479 | 2.130547 | 25.705057 | 8.391188 | 150.694198 | 13.053711 | 194.788953 | 51.976393 | 2.640505 | 7.692730 | 3.571729 | 170.771732 | 24.130360 | 41.784921 | 201.827945 | 42.566828 | 19.881199 | 130.438416 | 4.987007 | 106.151418 | 156.418305 | 112.147065 | 108.212843 | 5.078254 | 33.757327 | 1.669185 | 221.516565 | 71.764703 | 95.000053 | 99.384407 | 183.043995 | 267.228247 | 82.724855 | 91.902118 | 7.484193 | 4.767210 | 75.798375 | 71.409150 | 6.000983 | 75.709273 | 275.970615 | 214.292215 | 199.237297 | 150.610126 | 36.206372 | 181.021973 | 1.375684 | 4.755250 | 202.705978 | 3.194345 | 15.439219 | 80.284789 | 1.768829 | 9.713003 | 6.447420 | 120.670169 | 211.327535 | 99.752822 | 9.546372 | 70.815903 | 205.517922 | 296.858769 | 347.718119 | 138.771474 | 225.312678 | 3.943285 | 130.647012 | 153.660061 | 5.352355 | 2.972619 | 1.841580 | 60.403860 | 74.352099 | 145.700368 | 4.285851 | 2.020476 | 10.702124 | 4.526651 | 2.557814 | 1.739906 | 0.927405 | 6.279360 | 2.198286 | 15.007581 | 3.944781 | 26.006162 | 12.789883 | 1.447260 | 2.463016 | 1.565318 | 27.664883 | 4.151198 | 6.510748 | 58.149017 | 9.080101 | 3.866559 | 27.916195 | 3.361232 | 11.617816 | 32.642591 | 22.969568 | 27.047046 | 2.781322 | 6.413529 | 0.840601 | 50.452321 | 16.346353 | 53.474046 | 11.878769 | 21.625769 | 59.300809 | 17.463579 | 16.981588 | 2.512597 | 1.836205 | 23.135878 | 8.306942 | 3.685423 | 17.413042 | 40.605615 | 20.241977 | 44.798559 | 30.776368 | 8.208714 | 22.673462 | 1.268971 | 2.898209 | 69.768891 | 2.025639 | 4.343970 | 8.763637 | 1.163685 | 2.427816 | 2.821465 | 16.697796 | 47.107689 | 23.693778 | 4.030558 | 11.125933 | 27.923669 | 26.786083 | 43.081685 | 20.624788 | 32.864013 | 2.701473 | 18.575745 | 39.793183 | 2.552691 | 2.137601 | 0.770371 | 7.473433 | 7.307524 | 21.930364 | 0.310918 | 2.708013 | 1.805664 | 0.310470 | 0.200 | 47.790673 | 9.005681 | 3.396347 | 1.638574 | 15.725553 | 6.249568 | 2.372633 | 2.152820 | 0.913321 | 8.236432 | 2.603024 | 40.691493 | 4.084314 | 50.588901 | 14.765137 | 0.991601 | 2.548315 | 1.453884 | 43.837409 | 7.643958 | 12.455210 | 59.012564 | 12.347129 | 5.438734 | 36.124722 | 1.717829 | 31.353109 | 45.015494 | 29.117003 | 29.547867 | 2.617588 | 10.116194 | 0.597163 | 60.256684 | 20.407368 | 45.885890 | 27.779346 | 50.309277 | 70.456305 | 23.536410 | 24.857175 | 3.306259 | 1.837545 | 22.383274 | 20.579388 | 2.099265 | 22.039328 | 78.077148 | 54.492659 | 55.587949 | 38.801340 | 11.986302 | 47.577942 | 0.578727 | 1.855911 | 62.570404 | 0.998455 | 4.611844 | 21.367960 | 0.806943 | 3.492972 | 2.082013 | 31.995779 | 56.384310 | 28.954947 | 3.281927 | 18.944749 | 54.089301 | 81.073055 | 94.871458 | 40.367994 | 59.720492 | 2.504860 | 39.932871 | 44.355874 | 2.454888 | 1.473421 | 0.601773 | 17.095224 | 21.239630 | 41.911830 | 0.015625 | 30.484375 | 30.334103 | 0.0 | 1.0 | 2.599679 | -0.03125 | 10.00000 | 9.988742 | 0.015625 | 30.453125 | 30.302852 | 0.0 | 0.0 | 4.506159e-07 | 0.666875 | 23.237500 | 43.535224 | -0.2247 | 20.0244 | 22.280888 |
2019-12-07 22:30:00 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 22 | 30 | 5 | 30.500000 | 1.0 | 9.96875 | 30.468750 | 0.0 | 23.904375 | 19.7997 | 19.069989 | 4.249516 | 25.484225 | 13.637874 | 6.762926 | 4.089317 | 1.365903 | 19.358658 | 7.777190 | 48.753194 | 15.993656 | 323.289439 | 53.676189 | 2.000000 | 5.000000 | 1.441052 | 194.000000 | 16.569052 | 25.990793 | 355.593280 | 31.971167 | 18.334750 | 131.352879 | 7.058344 | 122.000000 | 175.000000 | 134.120286 | 177.000000 | 6.196527 | 34.226986 | 1.305291 | 177.421352 | 71.900428 | 55.212776 | 59.000000 | 140.150232 | 313.453882 | 56.647361 | 98.932835 | 6.954212 | 5.098201 | 154.836935 | 33.427983 | 5.000000 | 96.795751 | 256.671214 | 152.000000 | 172.126643 | 174.000000 | 23.419977 | 164.364162 | 1.887485 | 8.000000 | 227.000000 | 1.146313 | 12.196504 | 67.666468 | 1.772909 | 10.000000 | 3.130289 | 111.010111 | 381.852795 | 118.112376 | 14.000000 | 59.000051 | 235.000000 | 136.544681 | 229.000000 | 87.554330 | 172.124536 | 4.378611 | 79.734576 | 258.443404 | 11.000000 | 5.635572 | 1.489117 | 22.877648 | 34.253697 | 115.811287 | 30.199219 | 5.0 | 9.96875 | 30.164062 | 0.0 | 65.811094 | 31.288225 | 10.208022 | 5.384730 | 55.080449 | 21.066765 | 6.169015 | 5.255173 | 2.231377 | 25.833848 | 8.288318 | 138.937702 | 13.161034 | 200.187226 | 51.737203 | 2.732441 | 7.577155 | 3.387712 | 171.411368 | 23.811459 | 40.653163 | 213.650130 | 42.883509 | 19.451345 | 130.973378 | 5.271681 | 106.070669 | 160.340887 | 113.935685 | 112.754753 | 5.212520 | 33.975257 | 1.626564 | 220.353113 | 72.869944 | 88.855877 | 98.394384 | 182.668692 | 268.626811 | 80.288365 | 92.320207 | 7.236246 | 4.723872 | 78.722956 | 68.973550 | 5.911307 | 77.785374 | 269.017427 | 211.832438 | 200.521748 | 152.039020 | 36.246534 | 180.842963 | 1.376099 | 4.875929 | 205.349299 | 3.119583 | 15.383392 | 78.641274 | 1.738592 | 10.080231 | 6.450640 | 122.619515 | 213.601128 | 99.713491 | 9.701280 | 72.634607 | 203.836135 | 287.300369 | 338.480564 | 137.621655 | 217.928056 | 4.134998 | 124.008208 | 162.913611 | 5.506612 | 3.134230 | 1.860598 | 56.213420 | 73.674045 | 147.629489 | 7.466601 | 2.958074 | 5.996739 | 4.648827 | 3.789131 | 2.306596 | 0.959536 | 6.993422 | 2.454951 | 12.939718 | 2.630187 | 31.824319 | 19.480849 | 1.205051 | 1.867423 | 1.431426 | 26.077427 | 4.119648 | 7.183880 | 65.612587 | 9.587892 | 5.061969 | 27.474557 | 4.850681 | 14.764808 | 39.012981 | 17.295036 | 26.286651 | 2.486271 | 8.714745 | 1.112358 | 62.709988 | 13.357285 | 52.942724 | 15.189207 | 22.842173 | 59.725588 | 13.066453 | 14.167540 | 2.377393 | 2.213875 | 30.825591 | 6.661168 | 2.237820 | 17.493829 | 51.368685 | 18.645020 | 25.254966 | 21.064313 | 9.646655 | 26.413297 | 1.244309 | 4.558643 | 76.569147 | 2.106876 | 4.082955 | 11.188970 | 1.312028 | 4.920037 | 2.930875 | 18.949824 | 75.153284 | 25.361274 | 3.028098 | 10.303203 | 34.367155 | 23.961747 | 41.169224 | 26.269457 | 34.986082 | 4.201720 | 18.392498 | 48.435961 | 3.843088 | 2.027682 | 0.879915 | 7.595429 | 6.240051 | 17.994543 | 0.310918 | 2.708013 | 1.805664 | 0.310470 | 0.200 | 47.790673 | 9.005681 | 3.530665 | 1.672189 | 15.291084 | 6.159726 | 2.430550 | 2.227971 | 0.943988 | 8.142947 | 2.663147 | 37.806525 | 4.106598 | 52.096306 | 14.976128 | 1.064869 | 2.581994 | 1.405015 | 44.038068 | 7.598984 | 12.154515 | 62.224251 | 12.619585 | 5.425187 | 36.276793 | 1.857319 | 31.260052 | 45.956685 | 29.582306 | 30.997631 | 2.696054 | 10.197756 | 0.606362 | 60.763207 | 20.771179 | 47.001347 | 27.001011 | 50.490236 | 70.614530 | 23.155687 | 24.998446 | 3.276023 | 1.867262 | 23.375082 | 20.010140 | 2.121100 | 22.395202 | 75.794978 | 54.211449 | 54.929795 | 38.781199 | 11.970554 | 47.674990 | 0.611898 | 2.010658 | 63.699331 | 0.997126 | 4.676537 | 21.155727 | 0.819034 | 3.589369 | 2.125001 | 32.741294 | 57.442586 | 29.374126 | 3.359711 | 19.487052 | 53.732253 | 78.212418 | 91.144642 | 40.442587 | 58.634090 | 2.630664 | 37.561589 | 46.525283 | 2.586310 | 1.545329 | 0.634276 | 15.940934 | 20.883128 | 42.013828 | 0.000000 | 30.500000 | 30.340874 | 0.0 | 1.0 | 2.534386 | 0.00000 | 9.96875 | 9.987926 | 0.000000 | 30.468750 | 30.309623 | 0.0 | 0.0 | 4.322234e-07 | 0.000000 | 23.904375 | 42.733965 | 0.0000 | 19.7997 | 22.179615 |
2019-12-07 23:00:00 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 23 | 0 | 5 | 30.515625 | 1.0 | 10.00000 | 30.484375 | 0.0 | 24.571250 | 19.5750 | 26.361455 | 6.000000 | 20.551794 | 14.000000 | 9.222172 | 6.092798 | 3.461737 | 21.497685 | 6.400373 | 53.000000 | 14.851252 | 316.820232 | 73.000000 | 2.935141 | 6.468243 | 2.161579 | 189.000000 | 13.524912 | 25.990793 | 400.837753 | 42.862090 | 19.346638 | 140.000000 | 9.625015 | 106.577579 | 215.093477 | 124.782798 | 187.704084 | 7.000000 | 40.510301 | 1.440881 | 133.000000 | 85.145918 | 52.436811 | 51.000000 | 129.000000 | 336.672688 | 57.000000 | 110.000000 | 8.703673 | 3.965268 | 190.431633 | 35.090705 | 5.000000 | 114.080707 | 264.717334 | 130.000000 | 160.943134 | 184.280791 | 24.000000 | 162.965318 | 2.000000 | 13.000000 | 189.000000 | 2.000000 | 17.888206 | 71.826900 | 1.471723 | 10.541868 | 5.000000 | 118.316554 | 313.393130 | 122.185217 | 16.812136 | 60.103058 | 234.299510 | 123.000000 | 198.122782 | 82.000000 | 145.537514 | 5.000000 | 87.000000 | 276.728560 | 11.000000 | 7.608039 | 1.489117 | 23.000000 | 31.198273 | 122.335867 | 30.203125 | 5.0 | 10.00000 | 30.171875 | 0.0 | 63.074219 | 30.990000 | 10.597572 | 5.258121 | 52.390733 | 21.160377 | 6.042203 | 5.192674 | 2.252496 | 25.658194 | 8.110563 | 127.543315 | 13.153531 | 206.116903 | 52.499331 | 2.779680 | 7.347398 | 3.182877 | 172.351754 | 23.233895 | 39.529821 | 224.445030 | 43.363811 | 19.382169 | 132.783100 | 5.684313 | 106.462561 | 163.413940 | 116.430748 | 117.715185 | 5.397017 | 34.294926 | 1.582544 | 218.606049 | 74.323341 | 83.809282 | 96.788566 | 182.268238 | 269.043764 | 77.648412 | 93.070806 | 6.999297 | 4.723567 | 82.191509 | 66.349148 | 5.829607 | 79.534883 | 261.499750 | 207.988643 | 197.703801 | 154.365453 | 35.670582 | 180.586165 | 1.352657 | 4.998057 | 209.150704 | 2.974504 | 15.330301 | 76.844683 | 1.706183 | 10.467893 | 6.319794 | 124.839297 | 220.339401 | 99.937590 | 9.930217 | 75.075188 | 203.396995 | 275.988604 | 326.004574 | 135.440068 | 211.992519 | 4.289684 | 118.965796 | 172.853829 | 5.680969 | 3.331522 | 1.792073 | 52.283801 | 72.167513 | 149.672603 | 8.604021 | 1.930772 | 6.642121 | 3.696033 | 2.721133 | 2.341293 | 1.507673 | 5.169361 | 3.498804 | 14.689352 | 5.274853 | 32.851785 | 28.632200 | 2.017227 | 2.490988 | 1.353848 | 26.879513 | 3.454845 | 4.559701 | 75.009213 | 14.347779 | 6.124706 | 31.097052 | 3.858245 | 12.117640 | 40.657481 | 17.164441 | 28.711897 | 2.143571 | 10.723452 | 1.127023 | 62.533754 | 22.582029 | 70.477131 | 10.465955 | 28.197608 | 71.334766 | 18.713443 | 18.873616 | 3.128209 | 2.772029 | 41.388520 | 7.561818 | 2.514345 | 25.910209 | 46.748114 | 29.723856 | 25.016199 | 27.175654 | 5.719197 | 45.685726 | 1.441038 | 5.873366 | 39.329414 | 0.971433 | 4.069869 | 16.174542 | 2.083453 | 3.626142 | 3.188795 | 22.028832 | 44.570843 | 31.820902 | 4.367386 | 16.801741 | 35.357996 | 26.208133 | 35.244376 | 21.170231 | 32.674455 | 2.335283 | 18.196668 | 46.456925 | 4.648243 | 2.629765 | 1.263340 | 7.791369 | 6.524466 | 23.078239 | 0.331164 | 2.708013 | 1.231107 | 0.331164 | 0.250 | 57.151742 | 9.431250 | 3.678170 | 1.699928 | 14.818747 | 6.042422 | 2.446397 | 2.238185 | 0.951006 | 7.972716 | 2.697609 | 34.648541 | 4.101890 | 53.657135 | 15.214353 | 1.108801 | 2.574954 | 1.340447 | 44.372673 | 7.434093 | 11.769393 | 65.857375 | 12.804062 | 5.403627 | 36.619451 | 1.989807 | 31.193629 | 46.926430 | 30.245822 | 32.590779 | 2.721712 | 10.261078 | 0.604473 | 61.249459 | 21.175763 | 48.188705 | 26.091891 | 50.377420 | 70.936513 | 22.727818 | 25.097502 | 3.182904 | 1.862261 | 24.546623 | 19.296534 | 2.123309 | 22.781371 | 73.619263 | 53.535614 | 54.095988 | 39.081249 | 11.822250 | 47.806514 | 0.646801 | 2.146413 | 65.323700 | 0.996835 | 4.714382 | 20.859384 | 0.808987 | 3.668090 | 2.166771 | 33.403450 | 58.839516 | 29.797742 | 3.418948 | 19.955372 | 53.769469 | 74.801250 | 86.990855 | 40.176294 | 57.334426 | 2.704129 | 35.355756 | 48.976912 | 2.686867 | 1.603454 | 0.673666 | 14.664322 | 20.300405 | 41.920730 | 0.015625 | 30.500000 | 30.348007 | 0.0 | 1.0 | 2.471758 | 0.03125 | 9.96875 | 9.988419 | 0.015625 | 30.468750 | 30.316756 | 0.0 | 0.0 | 4.145816e-07 | 0.666875 | 23.904375 | 41.992629 | -0.2247 | 19.7997 | 22.073304 |
2019-12-07 23:30:00 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 23 | 30 | 5 | 30.515625 | 1.0 | 10.00000 | 30.484375 | 0.0 | 24.571250 | 19.5750 | 29.726747 | 6.374273 | 20.551794 | 12.880214 | 11.000000 | 6.000000 | 2.731807 | 21.042019 | 8.554908 | 41.316266 | 16.937543 | 274.962667 | 78.000000 | 2.935141 | 7.000000 | 2.161579 | 180.000000 | 16.707244 | 24.000000 | 443.000000 | 43.000000 | 19.131913 | 144.000000 | 12.191686 | 97.000000 | 206.000000 | 123.085073 | 198.229547 | 7.562895 | 43.810542 | 1.440881 | 116.262499 | 86.589762 | 60.504013 | 50.000000 | 121.188730 | 251.000000 | 39.000000 | 119.945118 | 7.121187 | 5.190798 | 229.585800 | 27.578086 | 4.776164 | 112.006512 | 207.000000 | 126.733518 | 158.465798 | 190.000000 | 19.000000 | 162.000000 | 1.258323 | 10.729095 | 185.376745 | 2.292626 | 17.000000 | 76.905570 | 2.000000 | 11.294859 | 6.000000 | 98.101959 | 282.205950 | 130.369787 | 23.390798 | 55.023927 | 235.574023 | 99.000000 | 166.000000 | 63.140142 | 122.954107 | 7.000000 | 87.708033 | 268.654251 | 17.389395 | 12.449519 | 1.230192 | 17.873163 | 31.918218 | 114.940228 | 30.203125 | 5.0 | 10.00000 | 30.171875 | 0.0 | 63.074219 | 30.990000 | 11.144763 | 5.133722 | 49.565666 | 21.012363 | 5.807164 | 5.092345 | 2.205600 | 24.707291 | 7.869593 | 115.588042 | 13.145948 | 213.919174 | 53.127102 | 2.831127 | 7.091409 | 2.945544 | 173.177295 | 22.506592 | 38.010002 | 237.470935 | 43.623486 | 19.275200 | 132.493389 | 5.995033 | 107.211080 | 164.888912 | 119.429225 | 123.195470 | 5.626848 | 34.948171 | 1.531313 | 216.515128 | 75.905275 | 79.030837 | 94.237291 | 181.187201 | 270.372058 | 74.775989 | 94.173664 | 6.784752 | 4.749861 | 86.945964 | 63.144623 | 5.661979 | 79.641889 | 253.977364 | 203.726340 | 193.745989 | 157.171960 | 34.797174 | 179.158212 | 1.364722 | 5.093378 | 213.775899 | 2.838776 | 15.263776 | 75.427898 | 1.685471 | 10.798514 | 6.146477 | 126.629257 | 226.338675 | 100.431953 | 10.193396 | 76.344963 | 207.051916 | 261.031638 | 310.345135 | 133.142805 | 205.897879 | 4.391169 | 112.083483 | 183.148626 | 5.850231 | 3.577680 | 1.741707 | 47.580465 | 69.737366 | 150.713839 | 10.140412 | 2.934205 | 6.308481 | 3.283132 | 5.240700 | 3.127573 | 2.002164 | 6.452973 | 3.009977 | 12.739515 | 5.559293 | 39.370768 | 28.375346 | 1.823261 | 2.606713 | 1.938082 | 38.795346 | 4.190501 | 4.496228 | 91.497337 | 13.972891 | 4.709423 | 34.106315 | 5.614303 | 13.986633 | 51.364713 | 21.778576 | 33.957858 | 2.364258 | 11.320364 | 1.958510 | 49.045388 | 22.381707 | 57.050840 | 10.519540 | 22.540416 | 82.659554 | 10.340308 | 27.202667 | 3.987351 | 2.470172 | 53.533195 | 7.346709 | 1.857385 | 28.409349 | 39.004987 | 27.555970 | 28.515852 | 29.027550 | 7.332470 | 44.631999 | 1.201921 | 6.853170 | 30.313050 | 2.043474 | 6.625921 | 19.927884 | 0.992204 | 4.021646 | 3.015404 | 22.373701 | 35.620035 | 36.534823 | 7.321227 | 12.999579 | 44.266594 | 20.991666 | 36.839905 | 20.161718 | 26.871263 | 4.931681 | 20.020543 | 53.985481 | 6.955190 | 4.034654 | 1.234441 | 10.472796 | 7.174967 | 19.284852 | 0.331164 | 2.708013 | 1.231107 | 0.331164 | 0.250 | 57.151742 | 9.431250 | 3.856170 | 1.714206 | 14.290491 | 5.888582 | 2.425542 | 2.178706 | 0.937963 | 7.748302 | 2.697175 | 31.348778 | 4.075311 | 55.355211 | 15.491505 | 1.119189 | 2.526829 | 1.263330 | 44.811551 | 7.150099 | 11.297544 | 69.900218 | 12.885179 | 5.374586 | 37.122829 | 2.119721 | 31.132772 | 47.900882 | 31.045792 | 34.327693 | 2.690139 | 10.313716 | 0.593836 | 61.684514 | 21.581929 | 49.414357 | 25.054070 | 49.895943 | 71.564483 | 22.200555 | 25.191522 | 3.033391 | 1.821983 | 25.952625 | 18.426001 | 2.106726 | 23.219442 | 71.416946 | 52.428570 | 53.123902 | 39.604063 | 11.543214 | 47.898147 | 0.677689 | 2.262770 | 67.205170 | 0.996009 | 4.724551 | 20.517684 | 0.777250 | 3.719409 | 2.208962 | 33.891202 | 60.697216 | 30.230022 | 3.465787 | 20.279379 | 54.189277 | 70.856263 | 82.561315 | 39.517992 | 55.862654 | 2.728388 | 33.301897 | 51.673873 | 2.762717 | 1.646485 | 0.710311 | 13.342595 | 19.454160 | 41.594224 | 0.000000 | 30.515625 | 30.354848 | 0.0 | 1.0 | 2.411686 | 0.00000 | 10.00000 | 9.988891 | 0.000000 | 30.484375 | 30.323597 | 0.0 | 0.0 | 3.976599e-07 | 0.000000 | 24.571250 | 41.281553 | 0.0000 | 19.5750 | 21.971333 |
5328 rows × 440 columns
! pip install -q catboost
2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.7/98.7 MB 4.4 MB/s eta 0:00:00 ?25h
import lightgbm as lgb
from catboost import Pool
from catboost import CatBoostRegressor
from sklearn.ensemble import RandomForestRegressor
from tqdm import tqdm
min_band = '0'
max_band = '78'
TARGET_MIN = 0
TARGET_MAX = 78 + 1
# 感謝祭の翌週のみを学習データとする
train = pd.concat([df_org['2017-11-26 00:00:00':'2017-12-02 23:30:00'],
df_org['2018-11-25 00:00:00':'2018-12-01 23:30:00'],], axis=0)
test = df_org[-2 * 24 * 7 :]
df = pd.concat([train, test], axis=0)
predict_list = []
for target in tqdm(range(TARGET_MIN, TARGET_MAX)):
band_l = target - 1
band_h = target + 1
# 目的変数の抽出
if target == 0 :
target_df = df.drop(columns=df.loc[:, str(band_h):max_band].columns)
elif target == 78 :
target_df = df.drop(columns=df.loc[:, min_band:str(band_l)].columns)
else :
if target == 1:
target_df = df.drop([min_band], axis=1)
target_df = target_df.drop(columns=df.loc[:, str(band_h):max_band].columns)
elif target == 77:
target_df = df.drop(columns=df.loc[:, min_band:str(band_l)].columns)
target_df = target_df.drop([max_band], axis=1)
else:
target_df = df.drop(columns=df.loc[:, min_band:str(band_l)].columns)
target_df = target_df.drop(columns=df.loc[:, str(band_h):max_band].columns)
target_train = target_df[:-2 * 24 * 7]
target_test = target_df[-2 * 24 * 7:]
target_test = target_test.drop(str(target),axis=1)
X_train = target_train.drop(str(target),axis=1).copy() # 学習用のデータフレームから説明変数を抽出
y_train = target_train[str(target)].copy() # 学習用のデータフレームから目的変数を抽出
# #light gbm
lgb_model_10 = lgb.LGBMRegressor(verbosity=-1, seed=CFG.SEED, max_depth=10)
lgb_model_10 = lgb_model_10.fit(X_train, y_train)
lgb_predict_10 = lgb_model_10.predict(target_test)
# #light gbm
lgb_model_50 = lgb.LGBMRegressor(verbosity=-1, seed=CFG.SEED, max_depth=50)
lgb_model_50 = lgb_model_50.fit(X_train, y_train)
lgb_predict_50 = lgb_model_50.predict(target_test)
# #catboost
train_pool = Pool(X_train, y_train)
cat_model = CatBoostRegressor(logging_level='Silent' , random_seed=CFG.SEED)
cat_model = cat_model.fit(train_pool)
cat_predict = cat_model.predict(target_test)
# #random forest
rg_model = RandomForestRegressor(n_jobs=-1, random_state=CFG.SEED)
rg_model = rg_model.fit(X_train,y_train)
rg_predict = rg_model.predict(target_test)
predict = (lgb_predict_10 + lgb_predict_50 + cat_predict + rg_predict) / 4
# 乗車数は0未満にはならないので、後処理で修正
predict = [elem if elem > 0 else 0 for elem in predict]
predict_list.append(predict)
100%|██████████| 79/79 [2:18:56<00:00, 105.53s/it]
# submitの作成
submit_df = pd.DataFrame(np.transpose(predict_list), columns=area_cols_name)
submit_df = submit_df.astype(int)
submit_df.columns = area_cols_name
submit_df.index = pd.date_range(start='2019/12/01 00:00:00', end='2019/12/07 23:30:00', freq='30T')
submit_df.index.name = 'tpep_pickup_datetime'
submit_df.to_csv(PATHS.SUBMIT_DATA)
display(submit_df.describe())
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 | 336.000000 |
mean | 7.500000 | 5.220238 | 40.190476 | 14.184524 | 3.633929 | 4.267857 | 1.377976 | 17.044643 | 6.696429 | 78.583333 | 8.175595 | 151.273810 | 42.261905 | 1.776786 | 4.889881 | 1.562500 | 116.607143 | 15.613095 | 34.336310 | 122.202381 | 31.940476 | 16.553571 | 83.020833 | 3.508929 | 95.848214 | 108.285714 | 75.410714 | 62.425595 | 4.315476 | 24.994048 | 1.547619 | 166.928571 | 53.267857 | 121.315476 | 87.642857 | 114.342262 | 154.773810 | 57.687500 | 48.011905 | 5.702381 | 4.357143 | 59.809524 | 42.886905 | 3.901786 | 46.425595 | 198.565476 | 175.806548 | 137.291667 | 115.351190 | 27.630952 | 146.071429 | 1.872024 | 3.848214 | 183.907738 | 2.931548 | 9.363095 | 38.758929 | 2.068452 | 8.270833 | 6.142857 | 91.151786 | 171.270833 | 80.345238 | 5.714286 | 60.934524 | 146.398810 | 202.574405 | 229.913690 | 99.449405 | 129.339286 | 4.360119 | 80.032738 | 97.062500 | 2.526786 | 1.815476 | 1.541667 | 30.139881 | 61.613095 | 88.958333 |
std | 5.888517 | 2.852442 | 27.288717 | 8.484676 | 2.273779 | 3.516228 | 1.904431 | 9.737193 | 4.212645 | 58.231747 | 4.831686 | 65.885219 | 20.262085 | 2.750446 | 2.821519 | 1.614013 | 50.452405 | 8.394686 | 19.558485 | 97.947964 | 18.272956 | 10.766870 | 41.594232 | 2.961430 | 43.544633 | 58.740425 | 42.240015 | 46.015706 | 2.982816 | 14.041302 | 1.612672 | 91.035081 | 27.257199 | 80.204227 | 58.632352 | 63.789150 | 97.658907 | 37.845569 | 33.018310 | 3.013521 | 2.036344 | 72.568481 | 27.808176 | 2.590314 | 28.618235 | 121.702262 | 107.744674 | 80.414846 | 54.862612 | 16.409156 | 78.820603 | 1.465521 | 3.268693 | 89.901142 | 2.126889 | 5.638276 | 25.551673 | 1.403009 | 6.162078 | 3.842085 | 49.404431 | 87.992238 | 42.640880 | 4.171893 | 36.023316 | 85.475781 | 146.182835 | 154.927624 | 64.597147 | 80.198137 | 2.931774 | 44.227588 | 60.543402 | 3.853961 | 2.779756 | 1.350972 | 20.829545 | 45.218795 | 48.075358 |
min | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 28.000000 | 3.000000 | 0.000000 | 0.000000 | 0.000000 | 15.000000 | 1.000000 | 2.000000 | 15.000000 | 1.000000 | 0.000000 | 8.000000 | 0.000000 | 7.000000 | 6.000000 | 3.000000 | 5.000000 | 0.000000 | 1.000000 | 0.000000 | 8.000000 | 3.000000 | 0.000000 | 2.000000 | 9.000000 | 2.000000 | 0.000000 | 2.000000 | 1.000000 | 0.000000 | 5.000000 | 0.000000 | 0.000000 | 3.000000 | 7.000000 | 7.000000 | 9.000000 | 10.000000 | 1.000000 | 7.000000 | 0.000000 | 0.000000 | 11.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 5.000000 | 21.000000 | 5.000000 | 0.000000 | 2.000000 | 6.000000 | 1.000000 | 5.000000 | 3.000000 | 3.000000 | 0.000000 | 4.000000 | 13.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 5.000000 |
25% | 4.000000 | 3.000000 | 10.750000 | 7.000000 | 2.000000 | 2.000000 | 0.000000 | 10.000000 | 4.000000 | 14.000000 | 4.000000 | 118.750000 | 27.750000 | 0.000000 | 3.000000 | 0.000000 | 87.500000 | 9.000000 | 16.000000 | 68.000000 | 15.750000 | 7.000000 | 45.750000 | 2.000000 | 66.750000 | 60.750000 | 35.500000 | 33.000000 | 2.000000 | 15.750000 | 1.000000 | 99.750000 | 31.000000 | 25.000000 | 29.000000 | 47.750000 | 48.750000 | 16.000000 | 22.000000 | 4.000000 | 3.000000 | 23.000000 | 14.750000 | 2.000000 | 27.000000 | 79.000000 | 69.000000 | 60.000000 | 72.500000 | 13.000000 | 67.000000 | 1.000000 | 1.000000 | 128.000000 | 1.000000 | 5.000000 | 16.000000 | 1.000000 | 3.000000 | 4.000000 | 46.000000 | 95.750000 | 45.750000 | 3.000000 | 25.000000 | 73.000000 | 42.000000 | 57.000000 | 32.500000 | 43.250000 | 3.000000 | 43.750000 | 63.000000 | 0.000000 | 0.000000 | 1.000000 | 11.000000 | 16.000000 | 44.000000 |
50% | 6.000000 | 4.000000 | 45.000000 | 15.000000 | 3.000000 | 4.000000 | 1.000000 | 16.000000 | 6.000000 | 87.000000 | 9.000000 | 142.500000 | 44.000000 | 1.000000 | 5.000000 | 1.000000 | 127.500000 | 15.000000 | 36.500000 | 94.500000 | 34.000000 | 16.000000 | 90.500000 | 3.000000 | 106.000000 | 110.500000 | 86.000000 | 49.000000 | 4.000000 | 26.500000 | 1.000000 | 170.500000 | 62.000000 | 154.000000 | 83.500000 | 135.500000 | 173.000000 | 68.000000 | 42.000000 | 5.000000 | 4.000000 | 34.000000 | 51.000000 | 4.000000 | 46.000000 | 215.000000 | 196.000000 | 153.000000 | 130.000000 | 29.000000 | 174.000000 | 2.000000 | 3.000000 | 207.500000 | 3.000000 | 10.000000 | 38.000000 | 2.000000 | 7.000000 | 5.000000 | 100.000000 | 180.000000 | 86.000000 | 5.000000 | 68.000000 | 156.000000 | 217.000000 | 262.000000 | 116.000000 | 159.000000 | 4.000000 | 86.000000 | 83.000000 | 1.000000 | 1.000000 | 1.000000 | 30.000000 | 67.500000 | 102.500000 |
75% | 10.000000 | 6.000000 | 62.250000 | 19.250000 | 5.000000 | 6.000000 | 2.000000 | 24.000000 | 8.000000 | 124.000000 | 11.000000 | 196.250000 | 56.000000 | 2.000000 | 7.000000 | 2.000000 | 151.000000 | 20.000000 | 50.000000 | 136.250000 | 43.250000 | 24.000000 | 112.500000 | 4.000000 | 125.250000 | 154.000000 | 104.000000 | 81.250000 | 5.000000 | 34.000000 | 2.000000 | 234.500000 | 74.000000 | 189.000000 | 144.000000 | 162.250000 | 221.000000 | 89.000000 | 74.000000 | 7.000000 | 6.000000 | 61.500000 | 65.250000 | 5.000000 | 61.000000 | 290.000000 | 241.250000 | 195.000000 | 152.000000 | 38.250000 | 212.000000 | 3.000000 | 5.000000 | 240.000000 | 4.000000 | 13.000000 | 60.000000 | 3.000000 | 12.000000 | 7.000000 | 129.000000 | 222.250000 | 108.250000 | 7.000000 | 88.000000 | 209.500000 | 336.250000 | 362.000000 | 155.000000 | 192.000000 | 5.000000 | 111.000000 | 122.000000 | 3.000000 | 2.000000 | 2.000000 | 45.000000 | 97.000000 | 125.000000 |
max | 34.000000 | 15.000000 | 102.000000 | 40.000000 | 12.000000 | 19.000000 | 10.000000 | 49.000000 | 26.000000 | 211.000000 | 22.000000 | 333.000000 | 103.000000 | 15.000000 | 13.000000 | 7.000000 | 207.000000 | 48.000000 | 80.000000 | 585.000000 | 76.000000 | 45.000000 | 158.000000 | 16.000000 | 202.000000 | 233.000000 | 163.000000 | 231.000000 | 21.000000 | 57.000000 | 9.000000 | 404.000000 | 103.000000 | 246.000000 | 201.000000 | 239.000000 | 402.000000 | 124.000000 | 145.000000 | 17.000000 | 14.000000 | 479.000000 | 105.000000 | 10.000000 | 159.000000 | 484.000000 | 465.000000 | 296.000000 | 232.000000 | 75.000000 | 270.000000 | 7.000000 | 16.000000 | 428.000000 | 9.000000 | 24.000000 | 96.000000 | 7.000000 | 27.000000 | 25.000000 | 182.000000 | 430.000000 | 165.000000 | 25.000000 | 138.000000 | 318.000000 | 460.000000 | 480.000000 | 225.000000 | 262.000000 | 19.000000 | 194.000000 | 306.000000 | 22.000000 | 16.000000 | 7.000000 | 88.000000 | 156.000000 | 189.000000 |