mini_forest
import pandas as pd
pd.options.display.max_columns = 100
pd.options.display.max_rows = 999
pd.options.display.float_format = '{:.6f}'.format
import numpy as np
import math
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
import datetime
import time
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
path = "/content/drive/MyDrive/tmp/7_probspace/3_taxi/"
train = pd.read_csv(path+'data/train_data.csv', parse_dates=["tpep_pickup_datetime"]).rename(columns={'tpep_pickup_datetime':'ds'})
train_ds = train.set_index("ds").astype(int)
train_ds.loc[train_ds.sum(axis=1)<=100,:]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ds | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2017-03-12 02:00:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2017-03-12 02:30:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
2018-03-11 02:00:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2018-03-11 02:30:00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2019-03-10 02:00:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2019-03-10 02:30:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
train_ds.loc[((train_ds.index >= "2017-03-12 01:00:00")&(train_ds.index <= "2017-03-12 04:00:00")),:]
# 他の時間帯
# train_ds.loc[((train_ds.index >= "2018-03-11 01:00:00")&(train_ds.index <= "2018-03-12 04:00:00")),:]
# train_ds.loc[((train_ds.index >= "2019-03-10 01:00:00")&(train_ds.index <= "2019-03-12 04:00:00")),:]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ds | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2017-03-12 01:00:00 | 82 | 28 | 23 | 19 | 22 | 10 | 14 | 24 | 17 | 19 | 38 | 315 | 72 | 2 | 8 | 4 | 243 | 22 | 27 | 1020 | 44 | 19 | 179 | 22 | 101 | 257 | 131 | 425 | 15 | 113 | 11 | 59 | 89 | 3 | 49 | 134 | 130 | 23 | 261 | 24 | 9 | 690 | 33 | 10 | 271 | 166 | 91 | 141 | 249 | 20 | 190 | 7 | 28 | 115 | 2 | 23 | 91 | 6 | 30 | 12 | 128 | 326 | 163 | 57 | 67 | 295 | 53 | 87 | 81 | 165 | 7 | 152 | 419 | 56 | 59 | 7 | 21 | 28 | 181 |
2017-03-12 01:30:00 | 78 | 35 | 14 | 15 | 11 | 3 | 4 | 25 | 13 | 13 | 37 | 359 | 53 | 0 | 7 | 0 | 238 | 11 | 28 | 965 | 32 | 28 | 165 | 20 | 72 | 249 | 131 | 419 | 9 | 121 | 7 | 19 | 104 | 2 | 32 | 115 | 102 | 18 | 280 | 7 | 7 | 786 | 23 | 11 | 262 | 92 | 85 | 102 | 223 | 21 | 170 | 6 | 23 | 100 | 2 | 14 | 77 | 8 | 14 | 13 | 113 | 259 | 138 | 70 | 52 | 294 | 47 | 52 | 69 | 96 | 11 | 155 | 420 | 59 | 38 | 3 | 16 | 12 | 132 |
2017-03-12 02:00:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2017-03-12 02:30:00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
2017-03-12 03:00:00 | 84 | 29 | 15 | 14 | 6 | 5 | 2 | 21 | 10 | 9 | 27 | 330 | 78 | 1 | 12 | 2 | 267 | 18 | 30 | 1089 | 22 | 26 | 171 | 13 | 107 | 237 | 108 | 407 | 8 | 107 | 17 | 21 | 70 | 1 | 35 | 101 | 68 | 28 | 256 | 11 | 10 | 817 | 22 | 11 | 280 | 67 | 68 | 120 | 243 | 20 | 168 | 4 | 18 | 115 | 2 | 7 | 80 | 6 | 22 | 9 | 115 | 252 | 141 | 89 | 58 | 300 | 43 | 59 | 46 | 95 | 8 | 187 | 403 | 73 | 56 | 7 | 12 | 19 | 160 |
2017-03-12 03:30:00 | 123 | 38 | 6 | 12 | 5 | 4 | 2 | 28 | 22 | 6 | 15 | 332 | 98 | 2 | 5 | 4 | 264 | 23 | 17 | 947 | 19 | 11 | 161 | 13 | 73 | 202 | 82 | 383 | 8 | 76 | 18 | 7 | 81 | 1 | 25 | 76 | 39 | 10 | 252 | 12 | 10 | 715 | 23 | 9 | 240 | 58 | 52 | 99 | 231 | 11 | 145 | 6 | 23 | 96 | 3 | 10 | 69 | 21 | 23 | 23 | 109 | 219 | 152 | 77 | 33 | 272 | 29 | 38 | 38 | 66 | 11 | 186 | 356 | 66 | 55 | 7 | 19 | 11 | 116 |
2017-03-12 04:00:00 | 88 | 51 | 6 | 10 | 8 | 4 | 4 | 22 | 32 | 8 | 9 | 274 | 115 | 0 | 10 | 0 | 283 | 35 | 26 | 884 | 21 | 15 | 131 | 10 | 63 | 196 | 66 | 268 | 18 | 73 | 17 | 1 | 74 | 2 | 31 | 102 | 26 | 8 | 192 | 13 | 7 | 633 | 13 | 6 | 143 | 36 | 51 | 120 | 210 | 20 | 131 | 6 | 19 | 87 | 0 | 10 | 44 | 18 | 16 | 15 | 89 | 231 | 111 | 63 | 45 | 271 | 21 | 45 | 38 | 57 | 15 | 161 | 278 | 69 | 83 | 11 | 14 | 14 | 114 |
train_plot = train[("2017-3-10" <= train["ds"])&(train["ds"] < "2017-3-14")]
fig, ax = plt.subplots(79, 1, figsize=(20, 79*4))
for i,obj in enumerate(list(map(str, range(79)))):
ax[i].plot(train_plot['ds'], train_plot[obj])
ax[i].axvspan(datetime.datetime(2017, 3, 12, 2, 0), datetime.datetime(2017, 3, 12, 2, 30), color="orange")
ax[i].set_title(obj)
plt.show()
plt.close()
plt.clf()
# グラフは添付データにて
Output hidden; open in https://colab.research.google.com to view.
# 補間する場合のサンプルコードをご参考までに
## pandas の interpolate を利用
train_hosei = train.copy()
train_hosei.loc[((train_hosei["ds"]>="2017-03-12 02:00:00")&(train_hosei["ds"]<="2017-03-12 02:30:00")),list(map(str, range(79)))] = float('nan')
train_hosei.loc[((train_hosei["ds"]>="2018-03-11 02:00:00")&(train_hosei["ds"]<="2018-03-11 02:30:00")),list(map(str, range(79)))] = float('nan')
train_hosei.loc[((train_hosei["ds"]>="2019-03-10 02:00:00")&(train_hosei["ds"]<="2019-03-10 02:30:00")),list(map(str, range(79)))] = float('nan')
train_hosei = train_hosei.set_index("ds")
train_hosei = train_hosei.interpolate(method='linear', axis=0)
train_hosei = train_hosei.round().astype(int)
train_hosei = train_hosei.reset_index()
train_hosei[(train_hosei["ds"]>="2019-03-10 01:00:00")&(train_hosei["ds"]<="2019-03-10 04:00:00")]
ds | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
38306 | 2019-03-10 01:00:00 | 65 | 18 | 8 | 7 | 6 | 1 | 3 | 23 | 6 | 23 | 28 | 232 | 47 | 0 | 3 | 2 | 215 | 17 | 19 | 718 | 24 | 14 | 162 | 8 | 81 | 186 | 108 | 308 | 5 | 48 | 9 | 53 | 86 | 21 | 38 | 89 | 89 | 13 | 148 | 7 | 7 | 472 | 19 | 5 | 232 | 94 | 82 | 78 | 191 | 18 | 122 | 4 | 11 | 115 | 3 | 29 | 102 | 2 | 12 | 9 | 77 | 209 | 121 | 33 | 27 | 172 | 32 | 63 | 29 | 69 | 5 | 85 | 360 | 29 | 24 | 4 | 9 | 17 | 118 |
38307 | 2019-03-10 01:30:00 | 88 | 19 | 3 | 7 | 8 | 2 | 3 | 16 | 14 | 14 | 30 | 187 | 49 | 1 | 4 | 1 | 214 | 14 | 15 | 707 | 12 | 12 | 127 | 4 | 58 | 173 | 112 | 320 | 9 | 44 | 3 | 53 | 77 | 10 | 29 | 89 | 70 | 5 | 161 | 6 | 10 | 594 | 18 | 3 | 254 | 55 | 72 | 80 | 176 | 15 | 81 | 2 | 10 | 108 | 2 | 20 | 76 | 5 | 8 | 7 | 51 | 152 | 102 | 34 | 31 | 172 | 34 | 42 | 27 | 59 | 5 | 95 | 347 | 24 | 32 | 2 | 12 | 9 | 71 |
38308 | 2019-03-10 02:00:00 | 78 | 20 | 2 | 7 | 7 | 3 | 2 | 14 | 13 | 11 | 32 | 188 | 47 | 1 | 5 | 1 | 224 | 15 | 17 | 705 | 15 | 11 | 132 | 5 | 59 | 172 | 104 | 323 | 9 | 58 | 4 | 41 | 79 | 7 | 28 | 84 | 62 | 9 | 162 | 7 | 11 | 594 | 15 | 4 | 227 | 52 | 68 | 81 | 180 | 14 | 86 | 2 | 10 | 99 | 1 | 19 | 76 | 4 | 9 | 7 | 49 | 144 | 98 | 37 | 29 | 170 | 32 | 37 | 28 | 55 | 5 | 111 | 356 | 27 | 32 | 2 | 11 | 11 | 71 |
38309 | 2019-03-10 02:30:00 | 69 | 21 | 2 | 8 | 6 | 3 | 1 | 13 | 11 | 8 | 35 | 189 | 45 | 0 | 5 | 2 | 234 | 17 | 20 | 703 | 17 | 10 | 138 | 7 | 61 | 172 | 95 | 325 | 9 | 71 | 4 | 29 | 81 | 4 | 26 | 78 | 54 | 13 | 164 | 7 | 11 | 593 | 12 | 5 | 201 | 49 | 63 | 82 | 184 | 14 | 90 | 1 | 11 | 89 | 1 | 18 | 76 | 2 | 10 | 8 | 47 | 135 | 93 | 39 | 26 | 167 | 30 | 31 | 28 | 52 | 5 | 127 | 365 | 29 | 31 | 2 | 10 | 13 | 71 |
38310 | 2019-03-10 03:00:00 | 59 | 22 | 1 | 8 | 5 | 4 | 0 | 11 | 10 | 5 | 37 | 190 | 43 | 0 | 6 | 2 | 244 | 18 | 22 | 701 | 20 | 9 | 143 | 8 | 62 | 171 | 87 | 328 | 9 | 85 | 5 | 17 | 83 | 1 | 25 | 73 | 46 | 17 | 165 | 8 | 12 | 593 | 9 | 6 | 174 | 46 | 59 | 83 | 188 | 13 | 95 | 1 | 11 | 80 | 0 | 17 | 76 | 1 | 11 | 8 | 45 | 127 | 89 | 42 | 24 | 165 | 28 | 26 | 29 | 48 | 5 | 143 | 374 | 32 | 31 | 2 | 9 | 15 | 71 |
38311 | 2019-03-10 03:30:00 | 64 | 17 | 4 | 10 | 8 | 5 | 3 | 13 | 6 | 8 | 19 | 216 | 49 | 1 | 6 | 1 | 253 | 17 | 10 | 706 | 8 | 11 | 150 | 2 | 61 | 135 | 71 | 255 | 11 | 52 | 9 | 5 | 73 | 2 | 37 | 74 | 36 | 10 | 132 | 4 | 9 | 551 | 8 | 5 | 91 | 48 | 29 | 85 | 174 | 17 | 87 | 5 | 12 | 67 | 2 | 8 | 43 | 1 | 9 | 8 | 53 | 121 | 76 | 28 | 23 | 122 | 15 | 24 | 23 | 27 | 13 | 127 | 291 | 31 | 37 | 11 | 6 | 11 | 61 |
38312 | 2019-03-10 04:00:00 | 53 | 29 | 2 | 3 | 2 | 3 | 2 | 18 | 6 | 7 | 19 | 247 | 31 | 0 | 5 | 1 | 211 | 16 | 13 | 528 | 19 | 12 | 127 | 5 | 54 | 127 | 65 | 160 | 6 | 36 | 8 | 7 | 57 | 2 | 14 | 51 | 33 | 4 | 113 | 4 | 5 | 441 | 5 | 5 | 60 | 35 | 52 | 75 | 149 | 14 | 80 | 9 | 8 | 70 | 3 | 11 | 32 | 5 | 5 | 4 | 29 | 116 | 71 | 35 | 15 | 125 | 8 | 20 | 12 | 19 | 12 | 119 | 200 | 28 | 30 | 4 | 5 | 16 | 74 |
# ところで、11月の第1日曜日午前2時は?
display(train_ds.loc[((train_ds.index >= "2017-11-05 01:30:00")&(train_ds.index <= "2017-11-05 03:00:00")),:])
# 直前に増加?
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ds | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2017-11-05 01:30:00 | 159 | 52 | 11 | 22 | 8 | 6 | 8 | 39 | 14 | 25 | 43 | 515 | 109 | 1 | 19 | 8 | 511 | 33 | 36 | 1583 | 64 | 32 | 320 | 29 | 210 | 399 | 195 | 640 | 14 | 125 | 17 | 18 | 200 | 0 | 71 | 153 | 157 | 24 | 337 | 13 | 15 | 1242 | 35 | 13 | 417 | 165 | 135 | 247 | 444 | 30 | 309 | 17 | 33 | 343 | 0 | 23 | 149 | 4 | 25 | 19 | 140 | 353 | 218 | 86 | 92 | 421 | 58 | 80 | 52 | 109 | 5 | 226 | 660 | 81 | 84 | 14 | 32 | 27 | 172 |
2017-11-05 02:00:00 | 48 | 23 | 5 | 15 | 6 | 2 | 1 | 13 | 12 | 5 | 25 | 207 | 57 | 1 | 8 | 2 | 200 | 19 | 23 | 596 | 20 | 10 | 79 | 5 | 73 | 87 | 59 | 242 | 6 | 73 | 6 | 4 | 72 | 0 | 13 | 54 | 28 | 5 | 114 | 3 | 4 | 487 | 12 | 2 | 218 | 22 | 40 | 95 | 151 | 5 | 82 | 1 | 6 | 82 | 2 | 9 | 34 | 2 | 7 | 10 | 47 | 129 | 93 | 39 | 31 | 127 | 15 | 21 | 22 | 27 | 1 | 108 | 239 | 27 | 31 | 8 | 10 | 4 | 62 |
2017-11-05 02:30:00 | 28 | 14 | 1 | 19 | 5 | 0 | 4 | 13 | 6 | 8 | 13 | 147 | 52 | 0 | 3 | 0 | 196 | 18 | 11 | 437 | 9 | 4 | 76 | 4 | 66 | 99 | 46 | 181 | 5 | 49 | 8 | 3 | 59 | 0 | 18 | 56 | 24 | 3 | 102 | 9 | 5 | 400 | 9 | 2 | 177 | 27 | 28 | 92 | 111 | 5 | 72 | 2 | 7 | 59 | 1 | 4 | 18 | 7 | 7 | 8 | 51 | 117 | 79 | 34 | 16 | 93 | 17 | 17 | 18 | 18 | 5 | 105 | 223 | 20 | 15 | 8 | 7 | 6 | 50 |
2017-11-05 03:00:00 | 23 | 21 | 4 | 6 | 4 | 0 | 6 | 9 | 6 | 6 | 11 | 133 | 33 | 0 | 9 | 0 | 179 | 13 | 6 | 311 | 5 | 10 | 58 | 1 | 61 | 101 | 43 | 128 | 3 | 49 | 8 | 3 | 38 | 2 | 13 | 47 | 15 | 5 | 71 | 9 | 5 | 302 | 4 | 4 | 142 | 28 | 24 | 69 | 112 | 4 | 54 | 2 | 4 | 49 | 1 | 2 | 20 | 3 | 5 | 10 | 35 | 129 | 74 | 21 | 18 | 76 | 6 | 14 | 14 | 23 | 2 | 92 | 158 | 26 | 21 | 5 | 11 | 4 | 38 |
train_plot = train[("2017-10-28" <= train["ds"])&(train["ds"] < "2017-11-14")]
fig, ax = plt.subplots(79, 1, figsize=(20, 79*4))
for i,obj in enumerate(list(map(str, range(79)))):
ax[i].plot(train_plot['ds'], train_plot[obj])
# ax[i].axvspan("2017-11-05 02:00:00", "2017-11-05 03:00:00", color="orange")
ax[i].axvspan(datetime.datetime(2017, 11, 5, 2), datetime.datetime(2017, 11, 5, 3), color="orange")
ax[i].set_title(obj)
plt.show()
plt.close()
plt.clf()
# グラフは添付データにて
Output hidden; open in https://colab.research.google.com to view.