YouTube動画視聴回数予測

YouTuberとしておさえるべきポイントとは?

賞金: 100,000 参加ユーザー数: 614 4年以上前に終了

LB: 0.750 CV: 0.754 LightGBM & Xgboost (Optuna)

参考資料

[動作環境] Google colaboratory

from google.colab import drive
drive.mount('/content/drive/')
Mounted at /content/drive/
# ご自身の環境に合わせてください
%cd /content/drive/My\ Drive/予測コンペ/ProbSpace/YouTube動画視聴回数予測
!ls
/content/drive/My Drive/予測コンペ/ProbSpace/YouTube動画視聴回数予測
lightgbmparams.txt  test_data.csv   youtube_estimation_prediction.ipynb
submission_lgb.csv  train_data.csv
import featuretools as ft
import lightgbm as lgb
#import optuna
import numpy as np
import sklearn.datasets
import sklearn.metrics
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import xgboost as xgb
import re
import seaborn as sns
from tensorflow import keras
import keras.layers as L
import seaborn as sns
from datetime import datetime, timezone, timedelta
from keras.models import Model
from sklearn.decomposition import PCA
from keras import losses
from sklearn import preprocessing
from sklearn.metrics import log_loss
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_log_error
import unicodedata
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  import pandas.util.testing as tm
Using TensorFlow backend.
!pip install japanize-matplotlib
import japanize_matplotlib
!pip install jeraconv
from jeraconv import jeraconv
Collecting japanize-matplotlib
atplotlib-1.1.1.tar.gz (4.1MB)
K     |████████████████████████████████| 4.1MB 24kB/s 
ent already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from japanize-matplotlib) (3.2.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->japanize-matplotlib) (2.4.7)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->japanize-matplotlib) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->japanize-matplotlib) (0.10.0)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->japanize-matplotlib) (2.8.1)
Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.6/dist-packages (from matplotlib->japanize-matplotlib) (1.18.3)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from cycler>=0.10->matplotlib->japanize-matplotlib) (1.12.0)
Building wheels for collected packages: japanize-matplotlib
  Building wheel for japanize-matplotlib (setup.py) ... ?25latplotlib: filename=japanize_matplotlib-1.1.1-cp36-none-any.whl size=4120191 sha256=88555cf8256f4daefec68583523e889cc5e23660465f1e9bbdfd5585c584ced5
  Stored in directory: /root/.cache/pip/wheels/c9/97/63/592117b7fd57075ad8942653fd47d7cc0d061311f88e89ab42
Successfully built japanize-matplotlib
Installing collected packages: japanize-matplotlib
Successfully installed japanize-matplotlib-1.1.1
/usr/local/lib/python3.6/dist-packages/japanize_matplotlib/japanize_matplotlib.py:15: MatplotlibDeprecationWarning: 
The createFontList function was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use FontManager.addfont instead.
  font_list = font_manager.createFontList(font_files)
Collecting jeraconv
  Downloading https://files.pythonhosted.org/packages/b6/b0/c4471ecae4fa8ba6143cd828bcc739d1ae442cc668d86eed4ac26a91d1a9/jeraconv-0.2.1-py3-none-any.whl
Installing collected packages: jeraconv
Successfully installed jeraconv-0.2.1

データの読み込み

train = pd.read_csv("train_data.csv")
print("train shape is " + str(train.shape))
train.head(1)
train shape is (19720, 17)
id video_id title publishedAt channelId channelTitle categoryId collection_date tags likes dislikes comment_count thumbnail_link comments_disabled ratings_disabled description y
0 1 GDtyztIThRQ [12] BGM Inazuma Eleven 3 - ~ライオコツト ダンジョン~ 2011-01-09T05:50:33.000Z UCQaNYC3dNvH8FqrEyK7hTJw DjangoShiny 20 20.01.02 Inazuma|Eleven|Super|Once|bgm|ost|イナズマイレブン|Kyo... 114 0 7 https://i.ytimg.com/vi/GDtyztIThRQ/default.jpg False False ~ライオコツト ダンジョン~Inazuma Eleven 3 BGM Complete (R... 29229
1 2 m4H9s3GtTlQ ねごと - メルシールー [Official Music Video] 2012-07-23T03:00:09.000Z UChMWDi-HBm5aS3jyRSaAWUA ねごと Official Channel 10 20.08.02 ねごと|ネゴト|メルシールー|Re:myend|リマインド|Lightdentity|ライデ... 2885 50 111 https://i.ytimg.com/vi/m4H9s3GtTlQ/default.jpg False False http://www.negoto.com/全員平成生まれ、蒼山幸子(Vo&Key)、沙田瑞... 730280
2 3 z19zYZuLuEU VF3tb 闇よだれvsちび太 (SEGA) 2007-07-26T13:54:09.000Z UCBdcyoZSt5HBLd_n6we-xIg siropai 24 20.14.01 VF3|VF4|VF5|ちび太|闇よだれ|chibita|virtuafighter|seg... 133 17 14 https://i.ytimg.com/vi/z19zYZuLuEU/default.jpg False False Beat-tribe cup finalhttp://ameblo.jp/siropai/ 80667
3 4 pmcIOsL7s98 free frosty weekend! 2005-05-15T02:38:43.000Z UC7K5am1UAQEsCRhzXpi9i1g Jones4Carrie 22 19.22.12 frosty 287 51 173 https://i.ytimg.com/vi/pmcIOsL7s98/default.jpg False False I look so bad but look at me! 34826
4 5 ZuQgsTcuM-4 トップ・オブ・ザ・ワールド 2007-09-09T09:52:47.000Z UCTW1um4R-QWa8iIfITGvlZQ Tatsuya Maruyama 10 20.08.01 ギター|guitar|南澤大介|トップオブザワールド|トップ|オブ|ワールド|カーペンターズ... 178 6 17 https://i.ytimg.com/vi/ZuQgsTcuM-4/default.jpg False False ソロギターのしらべより「トップオブザワールド」です。クラシックギターで弾いてます。Offic... 172727
5 6 GivuDeAGhyk ゲンム や スナイプ たちとのグリーティング 💛 仮面ライダーエグゼイドスペシャルショー に... 2017-01-11T00:34:20.000Z UCWy5UcrxbfXg5IW47_ntAXQ はれママ キッズTV 24 20.09.02 ゲンム|スナイプ|グリーティング|仮面ライダーエグゼイド|ジュウオウジャー|魔法学校の制服|... 0 0 53 https://i.ytimg.com/vi/GivuDeAGhyk/default.jpg False True 先日のよみうりランドで行われた「 仮面ライダーエグゼイドスペシャルショー」の時のグリーティン... 1358158
6 7 yiYr2-6LtcU Juice=Juice『「ひとりで生きられそう」って それってねえ、褒めているの?』(Pro... 2019-05-24T08:00:11.000Z UC6FadPgGviUcq6VQ0CEJqdQ JuiceJuice 10 20.09.02 Juice=Juice|JuiceJuice|ジュースジュース|ジュース|ハロー!プロジェク... 36905 394 4066 https://i.ytimg.com/vi/yiYr2-6LtcU/default.jpg False False 2019年6月5日発売のJuice=Juice 12thシングル『「ひとりで生きられそう」っ... 2881014
7 8 TUPHOUN2T30 Yersiz7-5/8 2007-09-01T21:24:46.000Z UC1zw3DnHyfaA88T8NSn0Upw AcemCadi 15 20.08.01 5 5 3 0 https://i.ytimg.com/vi/TUPHOUN2T30/default.jpg False False 5 12711
8 9 kRCi9nxy-Uc ドリフト専用 GT-R開発ストーリーⅡ ~進化するモンスターマシン 【本編】|TOYO TIRES 2017-06-27T10:55:01.000Z UCkW0S2pnXBY2R03jM5C-77Q TOYO TIRES JAPAN 2 20.09.02 Drift|Drifting|Nissan GT-R|ドリフト|Team TOYO TIRE... 4638 300 439 https://i.ytimg.com/vi/kRCi9nxy-Uc/default.jpg False False 競技のためのドリフト走行のみを見据え、開発されたTeam TOYO TIRES DRIFTの... 1003949
9 10 G6s8HF1WsJY BUMP OF CHICKEN「話がしたいよ」 2018-10-14T15:00:02.000Z UCOfESRUR5duQ2hMnTQ4oqhA BUMP OF CHICKEN 10 20.09.02 BUMP OF CHICKEN|億男 80206 1545 11012 https://i.ytimg.com/vi/G6s8HF1WsJY/default.jpg False False BUMP OF CHICKEN「話がしたいよ」※映画『億男』主題歌2018.10.15 (m... 13039631
test = pd.read_csv("test_data.csv")
iddf = test[["id"]]
print("test shape is " + str(test.shape))
test.head(1)
test shape is (29582, 16)
id video_id title publishedAt channelId channelTitle categoryId collection_date tags likes dislikes comment_count thumbnail_link comments_disabled ratings_disabled description
0 1 xU8UcB6RbLE Frightened Rabbit - The Greys 2007-09-26T11:00:07.000Z UCOQ_j8Qg4-p0lGKBpXYENbg Fatcat Records 10 20.08.01 Fatcat|Records|Frightened|Rabbit|The|Greys 471 38 61 https://i.ytimg.com/vi/xU8UcB6RbLE/default.jpg False False Director: Fraser CampbellDate:2007Taken from F...

前処理

train = pd.read_csv("train_data.csv")
test = pd.read_csv("test_data.csv")

train["y"] = np.log(train["y"])

mean_ = train[["categoryId", "y"]].groupby("categoryId").mean().reset_index().rename({"y":"mean"}, axis=1)
max_ = train[["categoryId", "y"]].groupby("categoryId").max().reset_index().rename({"y":"max"}, axis=1)
min_ = train[["categoryId", "y"]].groupby("categoryId").min().reset_index().rename({"y":"min"}, axis=1)
std_ = train[["categoryId", "y"]].groupby("categoryId").std().reset_index().rename({"y":"std"}, axis=1)
count_ = train[["categoryId", "y"]].groupby("categoryId").count().reset_index().rename({"y":"count"}, axis=1)
q1_ = train[["categoryId", "y"]].groupby("categoryId").quantile(0.1).reset_index().rename({"y":"q1"}, axis=1)
q25_ = train[["categoryId", "y"]].groupby("categoryId").quantile(0.25).reset_index().rename({"y":"q25"}, axis=1)
q5_ = train[["categoryId", "y"]].groupby("categoryId").quantile(0.5).reset_index().rename({"y":"q5"}, axis=1)
q75_ = train[["categoryId", "y"]].groupby("categoryId").quantile(0.75).reset_index().rename({"y":"q75"}, axis=1)
q9_ = train[["categoryId", "y"]].groupby("categoryId").quantile(0.9).reset_index().rename({"y":"q9"}, axis=1)

def is_japanese(string):
    for ch in string:
        try:
            name = unicodedata.name(ch) 
            if "CJK UNIFIED" in name \
            or "HIRAGANA" in name \
            or "KATAKANA" in name:
                return True
        except:
          continue
    return False

y = train["y"]
del train["y"]

df = pd.concat([train, test])

df["tags"].fillna("[none]", inplace=True)
tagdic = dict(pd.Series("|".join(list(df["tags"])).split("|")).value_counts().sort_values())


def bool_to_int(df):
  df["comments_disabled"] = df["comments_disabled"].astype(np.int16)
  df["ratings_disabled"] = df["ratings_disabled"].astype(np.int16)
  return df

def create_features(df):
  # like dislike comment
  #df["likes2"] = df["likes"]**2
  df["loglikes"] = np.log(df["likes"]+1)
  #df["dislikes2"] = df["dislikes"]**2
  df["logdislikes"] = np.log(df["dislikes"]+1)
  df["logcomment_count"] = np.log(df["comment_count"]+1)
  df["sqrtlikes"] = np.sqrt(df["likes"])
  df["like_dislike_ratio"] = df["likes"]/(df["dislikes"]+1)
  df["comments_like_ratio"] = df["comment_count"]/(df["likes"]+1)
  df["comments_dislike_ratio"] = df["comment_count"]/(df["dislikes"]+1)

  # likes comments diable
  df["likes_com"] = df["likes"] * df["comments_disabled"]
  df["dislikes_com"] = df["dislikes"] * df["comments_disabled"]
  df["comments_likes"] = df["comment_count"] * df["ratings_disabled"]

  # tags
  df["num_tags"] = df["tags"].astype(str).apply(lambda x: len(x.split("|")))
  df["length_tags"] = df["tags"].astype(str).apply(lambda x: len(x))
  df["tags_point"] = df["tags"].apply(lambda tags: sum([tagdic[tag] for tag in tags.split("|")]))
  df["count_en_tag"] = df["tags"].apply(lambda x: sum([bool(re.search(r'[a-zA-Z0-9]', x_)) for x_ in x.split("|")]))
  df["count_ja_tag"] = df["tags"].apply(lambda x: sum([is_japanese(x_) for x_ in x.split("|")]))

  # publishedAt
  df["publishedAt"] = pd.to_datetime(df["publishedAt"], utc=True)
  df["publishedAt_year"] = df["publishedAt"].apply(lambda x: x.year)
  df["publishedAt_month"] = df["publishedAt"].apply(lambda x: x.month)
  df["publishedAt_day"] = df["publishedAt"].apply(lambda x: x.day)
  df["publishedAt_hour"] = df["publishedAt"].apply(lambda x: x.hour)
  df["publishedAt_minute"] = df["publishedAt"].apply(lambda x: x.minute)
  #df["publishedAt_second"] = df["publishedAt"].apply(lambda x: x.second)
  df["publishedAt_dayofweek"] = df["publishedAt"].apply(lambda x: x.dayofweek)

  # collection_date
  #df["collection_date_year"] = df["collection_date"].apply(lambda x: int(x[0:2]))
  df["collection_date_month"] = df["collection_date"].apply(lambda x: int(x[3:5]))
  df["collection_date_day"] = df["collection_date"].apply(lambda x: int(x[6:8]))
  df["collection_date"] = pd.to_datetime("20"+df["collection_date"], format="%Y.%d.%m", utc=True)

  # delta
  df["delta"] = (df["collection_date"] - df["publishedAt"]).apply(lambda x: x.days)
  df["logdelta"] = np.log(df["delta"])
  df["sqrtdelta"] = np.sqrt(df["delta"])
  df["published_delta"] = (df["publishedAt"] - df["publishedAt"].min()).apply(lambda x: x.days)
  df["collection_delta"] = (df["collection_date"] - df["collection_date"].min()).apply(lambda x: x.days)

  df["description"].fillna(" ", inplace=True)
  df["ishttp_in_dis"] = df["description"].apply(lambda x: x.lower().count("http"))
  df["len_description"] = df["description"].apply(lambda x: len(x))

  df["title"].fillna(" ", inplace=True)
  df["len_title"] = df["title"].apply(lambda x: len(x))

  # is japanese
  df["isJa_title"] = df["title"].apply(lambda x: is_japanese(x))
  df["isJa_tags"] = df["tags"].apply(lambda x: is_japanese(x))
  df["isJa_description"] = df["description"].apply(lambda x: is_japanese(x))

  # is englosh
  #df["onEn_title"] = df["title"].apply(lambda x: x.encode('utf-8').isalnum())
  df["onEn_tags"] = df["tags"].apply(lambda x: x.encode('utf-8').isalnum())
  df["onEn_description"] = df["description"].apply(lambda x: x.encode('utf-8').isalnum())

  # cotain englosh
  df["conEn_title"] = df["title"].apply(lambda x: len(re.findall(r'[a-zA-Z0-9]', x.lower())))
  df["conEn_tags"] = df["tags"].apply(lambda x: len(re.findall(r'[a-zA-Z0-9]', x.lower())))
  df["conEn_description"] = df["description"].apply(lambda x: len(re.findall(r'[a-zA-Z0-9]', x.lower())))

  # Music
  df["music_title"] = df["title"].apply(lambda x: "music" in x.lower())
  df["music_tags"] = df["tags"].apply(lambda x: "music" in x.lower())
  df["music_description"] = df["description"].apply(lambda x: "music" in x.lower())

  # Official
  df["isOff"] = df["title"].apply(lambda x: "fficial" in x.lower())
  df["isOffChannell"] = df["channelTitle"].apply(lambda x: "fficial" in x.lower())
  df["isOffJa"] = df["title"].apply(lambda x: "公式" in x.lower())
  df["isOffChannellJa"] = df["channelTitle"].apply(lambda x: "公式" in x.lower())
  
  # Music
  df["cm_title"] = df["title"].apply(lambda x: "cm" in x.lower())
  df["cm_tags"] = df["tags"].apply(lambda x: "cm" in x.lower())
  df["cm_description"] = df["description"].apply(lambda x: "cm" in x.lower())

  
  df = df.merge(mean_, how='left', on=["categoryId"])
  df = df.merge(max_, how='left', on=["categoryId"])
  df = df.merge(min_, how='left', on=["categoryId"])
  df = df.merge(std_, how='left', on=["categoryId"])
  #df = df.merge(count_, how='left', on=["categoryId"])
  df = df.merge(q1_, how='left', on=["categoryId"])
  df = df.merge(q25_, how='left', on=["categoryId"])
  df = df.merge(q5_, how='left', on=["categoryId"])
  df = df.merge(q75_, how='left', on=["categoryId"])
  df = df.merge(q9_, how='left', on=["categoryId"])

  # 出現頻度
  for col in ["categoryId", "channelTitle"]:
    freq = df[col].value_counts()
    df["freq_"+col] = df[col].map(freq)

  return df

  #df['categoryId'] = df['categoryId'].astype('category')

df = bool_to_int(df)
df = create_features(df)

del df["channelId"]
del df["video_id"]
del df["title"]
del df["description"]
del df["thumbnail_link"]
del df["channelTitle"]
del df["tags"]
del df["publishedAt"]
del df["collection_date"]
del df["id"]

scalar = StandardScaler()
scalar.fit(df)
df = pd.DataFrame(scalar.transform(df), columns=df.columns)

X = df.iloc[:len(y), :]
test = df.iloc[len(y):, :]

LGB

def rmsle(preds, data):
    y_true = data.get_label()
    y_pred = preds
    y_pred[y_pred<0] = 0
    y_true[y_true<0] = 0
    acc = np.sqrt(mean_squared_log_error(np.exp(y_true), np.exp(y_pred)))
    # name, result, is_higher_better
    return 'accuracy', acc, False
# Optunaの最適化パラメータを代入する
light_params = {'task': 'train',
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'rmse',
        'verbosity': -1,
        "seed":42,
        'learning_rate': 0.01,}
best_params =  {'lambda_l1': 0.019918875912078603, 'lambda_l2': 0.002616688073257713, 'num_leaves': 219, 'feature_fraction': 0.6641013611124621, 'bagging_fraction': 0.7024199018549259, 'bagging_freq': 5, 'min_child_samples': 5}
#best_params =  {}
light_params.update(best_params)

xgb_params = {'learning_rate': 0.1,
              'objective': 'reg:squarederror',
              'eval_metric': 'rmse',
              'seed': 42,
              'tree_method': 'hist'}
best_params = {'learning_rate': 0.01665914389764044, 'lambda_l1': 4.406831762257336, 'num_leaves': 39}
#best_params = {}
xgb_params.update(best_params)


FOLD_NUM = 11
kf = KFold(n_splits=FOLD_NUM,
           shuffle=True,
           random_state=42)
scores = []
feature_importance_df = pd.DataFrame()

pred_cv = np.zeros(len(test.index))
num_round = 10000


for i, (tdx, vdx) in enumerate(kf.split(X, y)):
    print(f'Fold : {i}')
    ######LGB
    X_train, X_valid, y_train, y_valid = X.iloc[tdx], X.iloc[vdx], y.values[tdx], y.values[vdx]

    # LGB
    lgb_train = lgb.Dataset(X_train, y_train)
    lgb_valid = lgb.Dataset(X_valid, y_valid)
    gbc = lgb.train(light_params, lgb_train, num_boost_round=num_round,
                  valid_names=["train", "valid"], valid_sets=[lgb_train, lgb_valid],
                  #feval=rmsle,
                  early_stopping_rounds=100, verbose_eval=500)
    if i ==0:
        importance_df = pd.DataFrame(gbc.feature_importance(), index=X.columns, columns=['importance'])
    else:
        importance_df += pd.DataFrame(gbc.feature_importance(), index=X.columns, columns=['importance'])
    gbc_va_pred = np.exp(gbc.predict(X_valid, num_iteration=gbc.best_iteration))
    gbc_va_pred[gbc_va_pred<0] = 0

    # XGB
    xgb_dataset = xgb.DMatrix(X_train, label=y_train)
    xgb_test_dataset = xgb.DMatrix(X_valid, label=y_valid)
    xgbm = xgb.train(xgb_params, xgb_dataset, 10000, evals=[(xgb_dataset, 'train'),(xgb_test_dataset, 'eval')],
                      early_stopping_rounds=100, verbose_eval=500)
    xgbm_va_pred = np.exp(xgbm.predict(xgb.DMatrix(X_valid)))
    xgbm_va_pred[xgbm_va_pred<0] = 0
    

    # ENS
    # lists for keep results
    lgb_xgb_rmsle = []
    lgb_xgb_alphas = []

    for alpha in np.linspace(0,1,101):
        y_pred = alpha*gbc_va_pred + (1 - alpha)*xgbm_va_pred
        rmsle_score = np.sqrt(mean_squared_log_error(np.exp(y_valid), y_pred))
        lgb_xgb_rmsle.append(rmsle_score)
        lgb_xgb_alphas.append(alpha)
    
    lgb_xgb_rmsle = np.array(lgb_xgb_rmsle)
    lgb_xgb_alphas = np.array(lgb_xgb_alphas)

    lgb_xgb_best_alpha = lgb_xgb_alphas[np.argmin(lgb_xgb_rmsle)]

    print('best_rmsle=', lgb_xgb_rmsle.min())
    print('best_alpha=', lgb_xgb_best_alpha)
    plt.plot(lgb_xgb_alphas, lgb_xgb_rmsle)
    plt.title('f1_score for ensemble')
    plt.xlabel('alpha')
    plt.ylabel('f1_score')

    score_ = lgb_xgb_rmsle.min()
    scores.append(score_)

    lgb_submission = np.exp(gbc.predict((test), num_iteration=gbc.best_iteration))
    lgb_submission[lgb_submission<0] = 0

    xgbm_submission = np.exp(xgbm.predict(xgb.DMatrix(test)))
    xgbm_submission[xgbm_submission<0] = 0

    submission = lgb_xgb_best_alpha*lgb_submission + (1 - lgb_xgb_best_alpha)*xgbm_submission

    pred_cv += submission/FOLD_NUM

print("##########")
print(np.mean(scores))
Fold : 0
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.415821	valid's rmse: 0.791254
[1000]	train's rmse: 0.272764	valid's rmse: 0.780818
[1500]	train's rmse: 0.191684	valid's rmse: 0.77976
Early stopping, best iteration is:
[1802]	train's rmse: 0.156017	valid's rmse: 0.779337
[0]	train-rmse:12.0564	eval-rmse:12.0558
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.663573	eval-rmse:0.802208
[1000]	train-rmse:0.562327	eval-rmse:0.78955
[1500]	train-rmse:0.489989	eval-rmse:0.781737
Stopping. Best iteration:
[1605]	train-rmse:0.476654	eval-rmse:0.781063

best_rmsle= 0.7723708735179381
best_alpha= 0.53
Fold : 1
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.415948	valid's rmse: 0.806761
[1000]	train's rmse: 0.274257	valid's rmse: 0.796092
[1500]	train's rmse: 0.19296	valid's rmse: 0.793606
Early stopping, best iteration is:
[1683]	train's rmse: 0.170399	valid's rmse: 0.793351
[0]	train-rmse:12.05	eval-rmse:12.1199
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.665669	eval-rmse:0.821273
[1000]	train-rmse:0.564601	eval-rmse:0.808212
Stopping. Best iteration:
[1384]	train-rmse:0.508843	eval-rmse:0.803632

best_rmsle= 0.7901604684138034
best_alpha= 0.6900000000000001
Fold : 2
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.41695	valid's rmse: 0.772208
[1000]	train's rmse: 0.274123	valid's rmse: 0.765467
Early stopping, best iteration is:
[1260]	train's rmse: 0.227273	valid's rmse: 0.76395
[0]	train-rmse:12.0632	eval-rmse:11.9877
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.660115	eval-rmse:0.775522
Stopping. Best iteration:
[799]	train-rmse:0.594599	eval-rmse:0.764784

best_rmsle= 0.7566571288792217
best_alpha= 0.52
Fold : 3
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.416415	valid's rmse: 0.813777
[1000]	train's rmse: 0.273949	valid's rmse: 0.806612
[1500]	train's rmse: 0.192279	valid's rmse: 0.805145
[2000]	train's rmse: 0.137812	valid's rmse: 0.803946
Early stopping, best iteration is:
[2005]	train's rmse: 0.137409	valid's rmse: 0.803895
[0]	train-rmse:12.0584	eval-rmse:12.0349
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.657406	eval-rmse:0.819604
[1000]	train-rmse:0.567473	eval-rmse:0.811771
Stopping. Best iteration:
[1131]	train-rmse:0.548988	eval-rmse:0.810911

best_rmsle= 0.7990827363059435
best_alpha= 0.66
Fold : 4
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.419167	valid's rmse: 0.759758
[1000]	train's rmse: 0.278153	valid's rmse: 0.750938
Early stopping, best iteration is:
[967]	train's rmse: 0.284909	valid's rmse: 0.75067
[0]	train-rmse:12.0558	eval-rmse:12.0622
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.660001	eval-rmse:0.767437
[1000]	train-rmse:0.565929	eval-rmse:0.755205
Stopping. Best iteration:
[1322]	train-rmse:0.521751	eval-rmse:0.751779

best_rmsle= 0.7444942482023515
best_alpha= 0.53
Fold : 5
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.419538	valid's rmse: 0.731647
[1000]	train's rmse: 0.277492	valid's rmse: 0.725321
Early stopping, best iteration is:
[1383]	train's rmse: 0.210865	valid's rmse: 0.724353
[0]	train-rmse:12.042	eval-rmse:12.1995
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.662515	eval-rmse:0.75609
[1000]	train-rmse:0.56817	eval-rmse:0.748726
Stopping. Best iteration:
[1184]	train-rmse:0.537205	eval-rmse:0.745688

best_rmsle= 0.7234032824334943
best_alpha= 0.87
Fold : 6
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.415977	valid's rmse: 0.774832
[1000]	train's rmse: 0.273224	valid's rmse: 0.761787
[1500]	train's rmse: 0.191381	valid's rmse: 0.757047
[2000]	train's rmse: 0.137662	valid's rmse: 0.755709
[2500]	train's rmse: 0.100612	valid's rmse: 0.755097
Early stopping, best iteration is:
[2420]	train's rmse: 0.105658	valid's rmse: 0.754955
[0]	train-rmse:12.0622	eval-rmse:11.9974
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.652981	eval-rmse:0.793385
[1000]	train-rmse:0.560193	eval-rmse:0.783758
Stopping. Best iteration:
[1092]	train-rmse:0.548297	eval-rmse:0.783011

best_rmsle= 0.7534783804246369
best_alpha= 0.91
Fold : 7
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.418163	valid's rmse: 0.778172
[1000]	train's rmse: 0.276888	valid's rmse: 0.765684
[1500]	train's rmse: 0.194717	valid's rmse: 0.762378
[2000]	train's rmse: 0.140457	valid's rmse: 0.761087
[2500]	train's rmse: 0.102144	valid's rmse: 0.760373
Early stopping, best iteration is:
[2801]	train's rmse: 0.0850574	valid's rmse: 0.760061
[0]	train-rmse:12.0646	eval-rmse:11.9738
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.657884	eval-rmse:0.796695
[1000]	train-rmse:0.560982	eval-rmse:0.788118
Stopping. Best iteration:
[1140]	train-rmse:0.542157	eval-rmse:0.786472

best_rmsle= 0.7575249298157162
best_alpha= 0.9
Fold : 8
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.417445	valid's rmse: 0.767531
[1000]	train's rmse: 0.27553	valid's rmse: 0.761769
[1500]	train's rmse: 0.193106	valid's rmse: 0.760943
Early stopping, best iteration is:
[1414]	train's rmse: 0.205101	valid's rmse: 0.760651
[0]	train-rmse:12.0528	eval-rmse:12.0927
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.663993	eval-rmse:0.79707
[1000]	train-rmse:0.563801	eval-rmse:0.784384
Stopping. Best iteration:
[1372]	train-rmse:0.507814	eval-rmse:0.781689

best_rmsle= 0.7593112793829914
best_alpha= 0.8300000000000001
Fold : 9
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.417428	valid's rmse: 0.739369
[1000]	train's rmse: 0.275828	valid's rmse: 0.729646
[1500]	train's rmse: 0.194096	valid's rmse: 0.72802
Early stopping, best iteration is:
[1565]	train's rmse: 0.185543	valid's rmse: 0.727748
[0]	train-rmse:12.0598	eval-rmse:12.0211
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.660396	eval-rmse:0.769484
[1000]	train-rmse:0.563762	eval-rmse:0.764182
Stopping. Best iteration:
[980]	train-rmse:0.566838	eval-rmse:0.763706

best_rmsle= 0.7275074896979024
best_alpha= 1.0
Fold : 10
Training until validation scores don't improve for 100 rounds.
[500]	train's rmse: 0.418908	valid's rmse: 0.738958
[1000]	train's rmse: 0.276098	valid's rmse: 0.726298
[1500]	train's rmse: 0.193828	valid's rmse: 0.722673
[2000]	train's rmse: 0.139249	valid's rmse: 0.720791
[2500]	train's rmse: 0.101464	valid's rmse: 0.719539
Early stopping, best iteration is:
[2473]	train's rmse: 0.103164	valid's rmse: 0.719501
[0]	train-rmse:12.0546	eval-rmse:12.0737
Multiple eval metrics have been passed: 'eval-rmse' will be used for early stopping.

Will train until eval-rmse hasn't improved in 100 rounds.
[500]	train-rmse:0.661527	eval-rmse:0.771652
[1000]	train-rmse:0.573934	eval-rmse:0.760953
Stopping. Best iteration:
[1086]	train-rmse:0.561877	eval-rmse:0.760279

best_rmsle= 0.7188409066997462
best_alpha= 1.0
##########
0.7548028839794315
# 0.765394813186907
pd.set_option('display.max_rows', None)
importance_df.sort_values("importance")
importance
onEn_description 806
onEn_tags 1250
comments_likes 2150
cm_tags 2190
isOffJa 2496
music_title 2685
isOffChannell 2805
isOff 3193
isJa_tags 3296
cm_title 3534
music_tags 3539
cm_description 3580
ratings_disabled 3847
comments_disabled 4355
isOffChannellJa 4815
dislikes_com 5051
music_description 5073
collection_date_day 5210
likes_com 8298
isJa_description 8341
q25 9796
q5 9862
isJa_title 10291
q75 11264
q9 12511
collection_delta 14985
freq_categoryId 19160
sqrtlikes 24758
q1 25393
publishedAt_year 25643
sqrtdelta 27559
logcomment_count 29825
max 32681
min 34121
std 36496
mean 37052
ishttp_in_dis 44911
logdislikes 45719
published_delta 47415
collection_date_month 49442
categoryId 51309
loglikes 53635
count_ja_tag 55223
count_en_tag 59189
publishedAt_dayofweek 59426
logdelta 61850
comment_count 72629
num_tags 74003
publishedAt_month 75206
dislikes 85178
comments_dislike_ratio 86921
comments_like_ratio 104612
conEn_tags 104945
likes 105238
publishedAt_hour 107375
conEn_title 109185
freq_channelTitle 111399
length_tags 114020
publishedAt_day 115737
like_dislike_ratio 116834
publishedAt_minute 123132
conEn_description 129786
len_title 133314
tags_point 145636
delta 145769
len_description 150619
light_submission_df = pd.concat([iddf, pd.DataFrame(pred_cv)], axis=1)
light_submission_df.columns = ["id", "y"]
light_submission_df.to_csv("submission_lgb.csv", index=False)
print("end")
end

以下、試行錯誤

from keras import losses
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers.convolutional import Conv1D, UpSampling1D
from keras.layers.pooling import MaxPool1D
from keras.layers.core import Dense, Activation, Dropout, Flatten
from keras.layers import BatchNormalization
from keras.layers.pooling import MaxPooling1D
from keras.callbacks import LearningRateScheduler
from sklearn.preprocessing import OneHotEncoder
from keras.optimizers import Adam

# 学習率
def step_decay(epoch):
    x = 0.01
    if epoch >= 120: x = 0.001
    return x
lr_decay = LearningRateScheduler(step_decay)

# Optunaの最適化パラメータを代入する
def create_mlp(shape):
    '''
    Returns a keras model
    '''
    print(f"shape: {shape}")
    model = Sequential()
    model.add(Conv1D(32, 3, activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=shape))
    model.add(BatchNormalization())
    model.add(Conv1D(32, 3, activation='relu', kernel_initializer='he_uniform', padding='same'))
    model.add(BatchNormalization())
    model.add(MaxPooling1D(2))
    model.add(Dropout(0.2))
    model.add(Conv1D(64, 3, activation='relu', kernel_initializer='he_uniform', padding='same'))
    model.add(BatchNormalization())
    model.add(Conv1D(64, 3, activation='relu', kernel_initializer='he_uniform', padding='same'))
    model.add(BatchNormalization())
    model.add(MaxPooling1D(2))
    model.add(Dropout(0.3))
    model.add(Conv1D(128, 3, activation='relu', kernel_initializer='he_uniform', padding='same'))
    model.add(BatchNormalization())
    model.add(Conv1D(128, 3, activation='relu', kernel_initializer='he_uniform', padding='same'))
    model.add(BatchNormalization())
    model.add(MaxPooling1D(2))
    model.add(Dropout(0.4))
    model.add(Flatten())
    model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(1))
    return model


FOLD_NUM = 4
kf = KFold(n_splits=FOLD_NUM,
           shuffle=True,
           random_state=42)
scores = []
feature_importance_df = pd.DataFrame()

pred_cv = np.zeros(len(test.index))


for i, (tdx, vdx) in enumerate(kf.split(X, y)):
    print(f'Fold : {i}')
    X_train, X_valid, y_train, y_valid = X.iloc[tdx], X.iloc[vdx], y.values[tdx], y.values[vdx]

    mlp = create_mlp((X_train.values.shape[1], 1))
    optimizer = Adam(lr=0.001)
    mlp.compile(optimizer=optimizer, loss=losses.mean_squared_error)
    mlp.fit(x=np.reshape(X_train.values, (-1, X_train.shape[1], 1)), y=y_train.reshape(len(y_train),1),
           epochs=150, batch_size=493,
           validation_data=(np.reshape(X_valid.values, (-1, X_valid.shape[1], 1)), y_valid),
            callbacks=[lr_decay])#, verbose=0)

    mlp_pred = mlp.predict(np.reshape(X_valid.values, (-1, X_train.shape[1], 1)))

    plt.plot(mlp.history.history['loss'][3:], 'r', label='loss', alpha=0.7)
    plt.plot(mlp.history.history['val_loss'][3:], label='val_loss', alpha=0.7)
    plt.show()

    rmsle_score = np.sqrt(mean_squared_log_error(np.exp(y_valid), np.exp(mlp_pred)))
    print(rmsle_score)

    break
# memo
#Epoch 230/400
#14790/14790 [==============================] - 4s 301us/step - loss: 1.9379 - val_loss: 0.7369
np.sqrt(mean_squared_log_error(np.exp(y_valid), np.exp(mlp_pred)))
!pip install optuna
import optuna

OptunaLightGBM

def objective(trial):
    params = {
        'task': 'train',
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'rmse',
        'verbosity': -1,
        "seed":42,
        "learning_rate":trial.suggest_loguniform('learning_rate', 0.005, 0.03),
        'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
        'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
        'num_leaves': trial.suggest_int('num_leaves', 2, 256),
        'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
        'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
        'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
        'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
    }
    FOLD_NUM = 4
    kf = KFold(n_splits=FOLD_NUM,
              #shuffle=True,
              random_state=42)
    scores = []
    feature_importance_df = pd.DataFrame()

    pred_cv = np.zeros(len(test.index))
    num_round = 10000


    for i, (tdx, vdx) in enumerate(kf.split(X, y)):
        print(f'Fold : {i}')
        X_train, X_valid, y_train, y_valid = X.iloc[tdx], X.iloc[vdx], y.values[tdx], y.values[vdx]
        lgb_train = lgb.Dataset(X_train, y_train)
        lgb_valid = lgb.Dataset(X_valid, y_valid)
        model = lgb.train(params, lgb_train, num_boost_round=num_round,
                      valid_names=["train", "valid"], valid_sets=[lgb_train, lgb_valid],
                      early_stopping_rounds=10, verbose_eval=10000)
        va_pred = model.predict(X_valid)
        score_ = np.sqrt(mean_squared_error(y_valid, va_pred))
        scores.append(score_)

    return np.mean(scores)

study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=100)

# 結果の確認
print('Best trial:')
light_trial = study.best_trial

print('  Value: {}'.format(light_trial.value))

print('  Params: ')

with open("lightgbmparams.txt", "w") as file:
    for key, value in light_trial.params.items():
       print('    "{}": {},'.format(key, value))
       file.write('"{}": {},'.format(key, value))
#0.7894605792171627

Xgboost Optuna


def objective(trial):
    params = {
        'objective': 'reg:squarederror',
        'eval_metric': 'rmse',
        'seed': 42,
        'tree_method': 'hist',
        "learning_rate":trial.suggest_loguniform('learning_rate', 0.005, 0.03),
        'lambda_': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
        #'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
        'num_leaves': trial.suggest_int('num_leaves', 2, 256),
        #'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
        #'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
        #'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
        #'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
    }
    FOLD_NUM = 4
    kf = KFold(n_splits=FOLD_NUM,
              #shuffle=True,
              random_state=42)
    scores = []
    feature_importance_df = pd.DataFrame()

    pred_cv = np.zeros(len(test.index))
    num_round = 10000


    for i, (tdx, vdx) in enumerate(kf.split(X, y)):
        print(f'Fold : {i}')
        X_train, X_valid, y_train, y_valid = X.iloc[tdx], X.iloc[vdx], y.values[tdx], y.values[vdx]
        # XGB
        xgb_dataset = xgb.DMatrix(X_train, label=y_train)
        xgb_test_dataset = xgb.DMatrix(X_valid, label=y_valid)
        xgbm = xgb.train(params, xgb_dataset, 10000, evals=[(xgb_dataset, 'train'),(xgb_test_dataset, 'eval')],
                          early_stopping_rounds=100, verbose_eval=5000)
        xgbm_va_pred = xgbm.predict(xgb.DMatrix(X_valid))
        xgbm_va_pred[xgbm_va_pred<0] = 0
        score_ = np.sqrt(mean_squared_error(y_valid, xgbm_va_pred))
        scores.append(score_)

    return np.mean(scores)

study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=100)

# 結果の確認
print('Best trial:')
light_trial = study.best_trial

print('  Value: {}'.format(light_trial.value))

print('  Params: ')

with open("lightgbmparams.txt", "w") as file:
    for key, value in light_trial.params.items():
       print('    "{}": {},'.format(key, value))
       file.write('"{}": {},'.format(key, value))
#non turning params 0.7897379694106698

添付データ

  • youtube_estimation_prediction.ipynb?X-Amz-Expires=10800&X-Amz-Date=20241221T182121Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIP7GCBGMWPMZ42PQ
  • Aws4 request&x amz signedheaders=host&x amz signature=76e510f79cd4a7c29f082ef7d97f4ca565d3d9f143cf30865427546087463e4b
    hirayuki

    f1_scoreとかCMの特徴量のところに #musicとか、汚いまま載せてすみません。。。両方嘘です。
    他のコンペに利用したコードを流用したせいです。。

    # is englosh
    #df["onEn_title"] = df["title"].apply(lambda x: x.encode('utf-8').isalnum())
    df["onEn_tags"] = df["tags"].apply(lambda x: x.encode('utf-8').isalnum())
    df["onEn_description"] = df["description"].apply(lambda x: x.encode('utf-8').isalnum())

    あたりが他と差別化できた特徴量です。英語圏でupされた動画の方が再生数が多いと言う仮説が効きました。

    また目的変数を対数変換することは
    https://prob.space/competitions/youtube-view-count/discussions/chizuchizu-Post65af4bcca79bc71bb1b9
    のchizuchizuさんから学びました。

    Icon19
    yuki810

    ありがとうございます。 とても参考になりました!

    Aws4 request&x amz signedheaders=host&x amz signature=76e510f79cd4a7c29f082ef7d97f4ca565d3d9f143cf30865427546087463e4b
    hirayuki

    よかったです! ただここ2週間でまた色々と考えが変わり、 今このnotebookは無駄な特徴量が多すぎると思っています。。 お気をつけください。。

    Favicon
    new user
    コメントするには 新規登録 もしくは ログイン が必要です。