2nd Place Solution (DT-SN)

2nd Place Solution

1.はじめに

ProbSpaceの運営の皆様、共にコンペに参加し、コンペを盛り上げてくださった参加者の皆様に感謝を申し上げます。次のコンペも楽しみにしています。

Oreginさんが序盤からすごいスコアをたたき出していて、なんとか追いつこうと試行錯誤してみましたが全く歯が立ちませんでした。
公開されたOriginさんの解法は非常に勉強になりました。

2.前処理

今回のコンペは、trainデータとtestデータの間で特徴が大きく異なるものでした。

  • trainデータ:ほぼ全投球データ、開幕直後の59試合
  • testデータ:1アウトごとに1データ、残りの667試合

そこで、trainデータを可能な限りtestデータの形状に近づける処理をしました。

  • ランダムサンプリングによってtrainの試合数を100倍(5900試合)に水増ししたため、そのままだと集約特徴量がほぼtrainデータの特徴になってしまいます。そこで中央値を取ってtrainを59試合に戻した後に集約処理をしています
  • 特徴量選択はlightgbmのimportance上位200個を選択しています
  • testデータは[XS330さんが選手名の欠損を補完したもの](https://prob.space/competitions/npb/discussions/XS330-Post10f53bc2695850e53adb
    )を使用しました

特徴量は下記のような前後のデータの関係を表すものが有効でした:

  • next_skip/prev_skip:次/前のデータは何人先/前のバッターか(next_skipが1ならそのバッターはアウトになる確率が高く、2以上ならアウトにならない確率が高いと予測できる)
  • runnerCombi:現在のデータと次のデータの塁上のランナー組み合わせ(ランナーなしからランナー2塁になったら2ベースヒットの可能性が高いと予測できる)

speedやballPositionLabelなどtrainデータにしかない特徴量は使用しませんでした。

3.モデル

  • LightGBMの5folds、3seeds平均アンサンブルです
  • CVはgameIDをgroupとしたGroupKFoldです
  • trainデータとtestデータのボールカウントの分布の違いを調整するためsample_weightを設定しています

4.感想

評価指標がMacro-F1ということで、2ベースヒット、3ベースヒット、ホームランをいかに当てるかがスコアアップの肝だったと思います。前後のランナーやバッターの関係情報から推測しようとしましたが、専用の2値分類モデルで予測したOreginさんの戦略にはかないませんでした。問題の性質に合わせたモデルの作り方が重要だと実感しました。

import pandas as pd
import numpy as np
import random
import os
import gc

from tqdm.notebook import tqdm
import lightgbm as lgb
from sklearn.metrics import f1_score
from sklearn.model_selection import GroupKFold
# メモリ使用量削減
def reduce_mem_usage(df, verbose=False):
    start_mem = df.memory_usage().sum() / 1024**2
    cols = df.columns.to_list()
    df_1 = df.select_dtypes(exclude=['integer', 'float'])
    df_2 = df.select_dtypes(include=['integer']).apply(pd.to_numeric, downcast='integer')
    df_3 = df.select_dtypes(include=['float']).apply(pd.to_numeric, downcast='float')
    df = df_1.join([df_2, df_3]).loc[:, cols].reset_index(drop=True)
    end_mem = df.memory_usage().sum() / 1024**2
    if verbose:
        print('{:.2f}Mb->{:.2f}Mb({:.1f}% reduction)'.format(
            start_mem, end_mem, 100 * (start_mem - end_mem) / start_mem))
    return df
# 乱数SEED初期化
def seed_everything(seed=42):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
# 設定
INPUT_PATH = os.path.join('..', 'input')
N_CLASS = 8
SEED=42
N_SAMPLE=100

game_info.csv 処理

# game_info.csv読み取り
game_df = reduce_mem_usage(pd.read_csv(os.path.join(INPUT_PATH, 'game_info.csv'), index_col=0))
teamMap = {
    '巨人':0,'ヤクルト':1,'DeNA':2,'中日':3,'阪神':4,'広島':5,
    '西武':6,'日本ハム':7,'ロッテ':8,'楽天':9,'オリックス':10,'ソフトバンク':11,
}
game_df['topTeam'] = game_df['topTeam'].map(teamMap)
game_df['bottomTeam'] = game_df['bottomTeam'].map(teamMap)

placeMap = {
    '東京ドーム':0,'神宮':1,'横浜':2,'ナゴヤドーム':3,'甲子園':4,'マツダスタジアム':5,
    'メットライフ':6,'札幌ドーム':7,'ZOZOマリン':8,'楽天生命パーク':9,'京セラD大阪':10,'PayPayドーム':11,
    'ほっと神戸':12,
}
game_df['place'] = game_df['place'].map(placeMap)

game_df['startDayTime'] = pd.to_datetime(game_df['startDayTime'])
display(game_df)
game_df.info()

train_data.csv 処理

# train_data.csv読み取り
tr_df = reduce_mem_usage(pd.read_csv(os.path.join(INPUT_PATH, 'train_data.csv')))
# 重複行除去
print('duplicated lines:', tr_df.drop('id', axis=1).duplicated().sum())
tr_df = tr_df[~tr_df.drop('id', axis=1).duplicated()]

# game_infoマージ
tr_df = pd.merge(tr_df, game_df.drop(['bgTop', 'bgBottom'], axis=1), on='gameID', how='left')

# 同名選手回避
f = tr_df['inning'].str.contains('表')
tr_df.loc[ f, 'batter'] = tr_df.loc[ f, 'batter'] + '@' + tr_df.loc[ f, 'topTeam'].astype(str)
tr_df.loc[~f, 'batter'] = tr_df.loc[~f, 'batter'] + '@' + tr_df.loc[~f, 'bottomTeam'].astype(str)
tr_df.loc[ f, 'pitcher'] = tr_df.loc[ f, 'pitcher'] + '@' + tr_df.loc[ f, 'bottomTeam'].astype(str)
tr_df.loc[~f, 'pitcher'] = tr_df.loc[~f, 'pitcher'] + '@' + tr_df.loc[~f, 'topTeam'].astype(str)
display(tr_df)
tr_df.info()

test_data.csv 処理

# test_data.csv読み取り
ts_df = reduce_mem_usage(pd.read_csv(os.path.join(INPUT_PATH, 'test_data_improvement.csv')))
# game_infoマージ
ts_df = pd.merge(ts_df, game_df.drop(['bgTop', 'bgBottom'], axis=1), on='gameID', how='left')

# 同名選手回避
f = ts_df['inning'].str.contains('表')
ts_df.loc[ f, 'batter'] = ts_df.loc[ f, 'batter'] + '@' + ts_df.loc[ f, 'topTeam'].astype(str)
ts_df.loc[~f, 'batter'] = ts_df.loc[~f, 'batter'] + '@' + ts_df.loc[~f, 'bottomTeam'].astype(str)
ts_df.loc[ f, 'pitcher'] = ts_df.loc[ f, 'pitcher'] + '@' + ts_df.loc[ f, 'bottomTeam'].astype(str)
ts_df.loc[~f, 'pitcher'] = ts_df.loc[~f, 'pitcher'] + '@' + ts_df.loc[~f, 'topTeam'].astype(str)
display(ts_df)
ts_df.info()

train、test 間の情報取得

# trainとtestに共通のピッチャーを取得
tr_pitcher = set(tr_df['pitcher'].unique())
ts_pitcher = set(ts_df['pitcher'].unique())
print(tr_df['pitcher'].isin(tr_pitcher & ts_pitcher).sum())
print(ts_df['pitcher'].isin(tr_pitcher & ts_pitcher).sum())

# trainとtestに共通のバッターを取得
tr_batter = set(tr_df['batter'].unique())
ts_batter = set(ts_df['batter'].unique())
print(tr_df['batter'].isin(tr_batter & ts_batter).sum())
print(ts_df['batter'].isin(tr_batter & ts_batter).sum())

train、test結合

# train_dataとtest_dataを結合
input_df = pd.concat([tr_df, ts_df], axis=0).reset_index(drop=True)
del tr_df, ts_df, game_df
gc.collect()

# pitcherHandとbatterHand
input_df['pitcherHand'] = input_df['pitcherHand'].fillna('R')
input_df['batterHand'] = input_df['batterHand'].fillna('R')

# 球種
input_df['pitchType'] = input_df['pitchType'].fillna('-')

# 球速
input_df['speed'] = input_df['speed'].str.replace('km/h', '').replace('-', '135').astype(float)
input_df['speed'] = input_df['speed'].fillna(0)

# 投球位置
input_df['ballPositionLabel'] = input_df['ballPositionLabel'].fillna('中心')

# 投球のX座標(1-21)
input_df['ballX'] = input_df['ballX'].fillna(0).astype(int)

# 投球のY座標(A-K)変換
input_df['ballY'] = input_df['ballY'].map({chr(ord('A')+i):i+1 for i in range(11)})
input_df['ballY'] = input_df['ballY'].fillna(0).astype(int)

# 打球方向(A-Z)
input_df['dir'] = input_df['ballY'].map({chr(ord('A')+i):i+1 for i in range(26)})
input_df['dir'] = input_df['dir'].fillna(0).astype(int)

# 打球距離
input_df['dist'] = input_df['dist'].fillna(0)

# 打球種類
input_df['battingType'] = input_df['battingType'].fillna('G')

# 投球結果がアウトか
input_df['isOuts'] = input_df['isOuts'].fillna('-1').astype(int)

display(input_df)
input_df.info()

基礎特徴量

from sklearn.preprocessing import LabelEncoder
def get_base_features(input_df):
    seed_everything(seed=SEED)
    output_df = input_df.copy()

    output_df['inning'] = 2 * (output_df['inning'].str[0].astype(int) - 1) + output_df['inning'].str.contains('裏')

    output_df['pitcherCommon'] = output_df['pitcher']
    output_df['batterCommon'] = output_df['batter']
    output_df.loc[~(output_df['pitcherCommon'].isin(tr_pitcher & ts_pitcher)), 'pitcherCommon'] = np.nan
    output_df.loc[~(output_df['batterCommon'].isin(tr_batter & ts_batter)), 'batterCommon'] = np.nan

    output_df['startTime'] = output_df['startDayTime'].dt.hour

    # label encoding
    cat_cols = output_df.select_dtypes(include=['object']).columns
    for col in cat_cols:
        f = output_df[col].notnull()
        output_df.loc[f, col] = LabelEncoder().fit_transform(output_df.loc[f, col].values)
        output_df.loc[~f, col] = -1
        output_df[col] = output_df[col].astype(int)

    # count encoding
    count_cols = ['pitcher', 'batter']
    for col in count_cols:
        f = output_df[col].notnull()
        new_col = 'cnt_' + col
        count_map = output_df[['id', col]].groupby([col])['id'].count().to_dict()
        output_df[new_col] = 0
        output_df.loc[f, new_col] = output_df.loc[f, col].map(count_map)
        output_df[new_col] = output_df[new_col].astype(int)
    
    output_df['inningHalf'] = output_df['inning'] % 2
    output_df['inningNumber'] = output_df['inning'] // 2
    output_df['outCount'] = output_df['inning'] * 3 + output_df['O']
    output_df['B_S_O'] = output_df['B'] + 4 * (output_df['S'] + 3 * output_df['O'])
    output_df['b1_b2_b3'] = output_df['b1'] * 1 + output_df['b2'] * 2 + output_df['b3'] * 4
    output_df['ballIdx'] = output_df['S'] - output_df['B']
    output_df['baseIdx'] = (
        output_df['b3'] * 3
        + (~output_df['b3'] & output_df['b2']) * 2
        + (~output_df['b3'] & ~output_df['b2'] & output_df['b1']) * 1
        - output_df['O']
    )

    # for target encoding
    for i in range(8):
        output_df.loc[output_df['y'].notnull(), f'y{i}'] = (output_df['y'] == i).astype(float)
    
    return reduce_mem_usage(output_df)

ランダムサンプリング

def random_sampling(input_df, n_sample=10, random_state=1):
    dfs = []
    tr_df = input_df[input_df['y'].notnull()].copy()
    ts_df = input_df[input_df['y'].isnull()].copy()
    for i in tqdm(range(n_sample)):
        df = tr_df.groupby(['gameID', 'outCount']).apply(
            lambda x: x.sample(n=1, random_state=random_state+i)).reset_index(drop=True)
        df['subGameID'] = df['gameID'] * n_sample + i
        dfs.append(df)
    ts_df['subGameID'] = ts_df['gameID'] * n_sample
    return pd.concat(dfs + [ts_df], axis=0)

集約特徴量

# 集約関数
def aggregation(input_df, group_keys, group_values, agg_methods):
    new_df = []
    for agg_method in agg_methods:
        for col in group_values:
            if callable(agg_method):
                agg_method_name = agg_method.__name__
            else:
                agg_method_name = agg_method
            new_col = f'agg_{agg_method_name}_{col}_grpby_' + '_'.join(group_keys)
            agg_df = input_df[[col]+group_keys].groupby(group_keys)[[col]].agg(agg_method)
            agg_df.columns = [new_col]
            new_df.append(agg_df)
    new_df = pd.concat(new_df, axis=1).reset_index()
    return new_df

# 集約関数
def smooth_aggregation(input_df, group_keys, group_values, agg_methods):
    new_df = []
    for agg_method in agg_methods:
        all_agg_df = input_df[group_values].agg(agg_method)
        for col in group_values:
            if callable(agg_method):
                agg_method_name = agg_method.__name__
            else:
                agg_method_name = agg_method
            new_col = f'agg_{agg_method_name}_{col}_grpby_' + '_'.join(group_keys)
            groupby = input_df[[col]+group_keys].groupby(group_keys)
            count = groupby[[col]].count()
            r = count / (10 + count)
            agg_df = r * groupby[[col]].agg(agg_method) + (1 - r) * all_agg_df[[col]]
            agg_df.columns = [new_col]
            new_df.append(agg_df)
    new_df = pd.concat(new_df, axis=1).reset_index()
    return new_df

target encoding

# target encoding関数
from sklearn.model_selection import GroupKFold
def target_encoding(input_df, input_col, group_col, target_col, n_splits=5):
    output_df = input_df.copy()
    kf = GroupKFold(n_splits=n_splits)
    new_col = 'tgt_' + target_col + '_grpby_' + input_col 
    output_df[new_col] = np.nan
    for tr_idx, vl_idx in kf.split(X=output_df, groups=output_df[group_col]):
        tr_idx = output_df.index[tr_idx]
        vl_idx = output_df.index[vl_idx]
        groupby = output_df.loc[tr_idx, [input_col, target_col]].dropna().groupby(input_col)
        count = groupby[target_col].count()
        r = count / (10 + count)
        target_map = (r * groupby[target_col].mean() + (1 - r) * output_df.loc[tr_idx, target_col].mean()).to_dict()
        output_df.loc[vl_idx, new_col] = output_df.loc[vl_idx, input_col].map(target_map).fillna(
            output_df.loc[tr_idx, target_col].mean())
    return output_df

前後特徴量

def get_diff_feature(input_df, value_col, periods, in_inning=True, aggfunc=np.median):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=aggfunc)
    if in_inning:
        dfs = []
        for inning in range(9):
            df0 = pivot_df.loc[:, [out+inning*6 for out in range(0,3)]].diff(periods, axis=1)
            df1 = pivot_df.loc[:, [out+inning*6 for out in range(3,6)]].diff(periods, axis=1)
            dfs += [df0, df1]
        pivot_df = pd.concat(dfs, axis=1).stack()
    else:
        df0 = pivot_df.loc[:, [out+inning*6 for inning in range(9) for out in range(0,3)]].diff(periods, axis=1)
        df1 = pivot_df.loc[:, [out+inning*6 for inning in range(9) for out in range(3,6)]].diff(periods, axis=1)
        pivot_df = pd.concat([df0, df1], axis=1).stack()
    return pivot_df

def get_shift_feature(input_df, value_col, periods, in_inning=True, aggfunc=np.median):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=aggfunc)
    if in_inning:
        dfs = []
        for inning in range(9):
            df0 = pivot_df.loc[:, [out+inning*6 for out in range(0,3)]].shift(periods, axis=1)
            df1 = pivot_df.loc[:, [out+inning*6 for out in range(3,6)]].shift(periods, axis=1)
            dfs += [df0, df1]
        pivot_df = pd.concat(dfs, axis=1).stack()
    else:
        df0 = pivot_df.loc[:, [out+inning*6 for inning in range(9) for out in range(0,3)]].shift(periods, axis=1)
        df1 = pivot_df.loc[:, [out+inning*6 for inning in range(9) for out in range(3,6)]].shift(periods, axis=1)
        pivot_df = pd.concat([df0, df1], axis=1).stack()
    return pivot_df
def get_next_data(input_df, value_col, in_inning=True, nan_value=None):
    pivot_df = get_shift_feature(input_df, value_col, periods=-1, in_inning=in_inning)
    pivot_df.name = 'next_' + value_col
    output_df = pd.merge(
        input_df, pivot_df, left_on=['subGameID', 'outCount'], right_index=True, how='left')
    if nan_value is not None:
        output_df[pivot_df.name].fillna(nan_value, inplace=True)
    return output_df

def get_prev_data(input_df, value_col, in_inning=True, nan_value=None):
    pivot_df = get_shift_feature(input_df, value_col, periods=1, in_inning=in_inning)
    pivot_df.name = 'prev_' + value_col
    output_df = pd.merge(
        input_df, pivot_df, left_on=['subGameID', 'outCount'], right_index=True, how='left')
    if nan_value is not None:
        output_df[pivot_df.name].fillna(nan_value, inplace=True)
    return output_df
    
def get_next_diff(input_df, value_col, in_inning=True, nan_value=None):
    pivot_df = get_diff_feature(input_df, value_col, periods=-1, in_inning=in_inning)
    pivot_df.name = 'next_diff_' + value_col
    output_df = pd.merge(
        input_df, pivot_df, left_on=['subGameID', 'outCount'], right_index=True, how='left')
    if nan_value is not None:
        output_df[pivot_df.name].fillna(nan_value, inplace=True)
    return output_df

def get_prev_diff(input_df, value_col, in_inning=True, nan_value=None):
    pivot_df = get_diff_feature(input_df, value_col, periods=1, in_inning=in_inning)
    pivot_df.name = 'prev_diff_' + value_col
    output_df = pd.merge(
        input_df, pivot_df, left_on=['subGameID', 'outCount'], right_index=True, how='left')
    if nan_value is not None:
        output_df[pivot_df.name].fillna(nan_value, inplace=True)
    return output_df

pivot table 特徴量

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

# pivot tabel を用いた特徴量
def get_pivot_PCA18_features(input_df, n, value_col):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median)
    sc0 = StandardScaler().fit_transform(np.median(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,0::2,:], axis=-1))
    sc1 = StandardScaler().fit_transform(np.median(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,1::2,:], axis=-1))
    pca = PCA(n_components=n, random_state=2021)
    pca_df0 = pd.DataFrame(pca.fit_transform(sc0), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_PCA9T={x:02}')
    pca_df1 = pd.DataFrame(pca.fit_transform(sc1), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_PCA9B={x:02}')
    pca_df = pd.concat([pca_df0, pca_df1], axis=1)
    pca_df = pd.merge(
        input_df, pca_df, left_on='subGameID', right_index=True, how='left')
    return reduce_mem_usage(pca_df)

# pivot tabel を用いた特徴量
def get_pivot_PCA27_features(input_df, n, value_col):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median)
    sc0 = StandardScaler().fit_transform(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,0::2].reshape(-1,27))
    sc1 = StandardScaler().fit_transform(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,1::2].reshape(-1,27))
    pca = PCA(n_components=n, random_state=2021)
    pca_df0 = pd.DataFrame(pca.fit_transform(sc0), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_PCA27T={x:02}')
    pca_df1 = pd.DataFrame(pca.fit_transform(sc1), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_PCA27B={x:02}')
    pca_df = pd.concat([pca_df0, pca_df1], axis=1)
    pca_df = pd.merge(
        input_df, pca_df, left_on='subGameID', right_index=True, how='left')
    return reduce_mem_usage(pca_df)

# pivot tabel を用いた特徴量
def get_pivot_PCA54_features(input_df, n, value_col):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median)
    sc = StandardScaler().fit_transform(pivot_df.fillna(0).values)
    pca = PCA(n_components=n, random_state=2021)
    pca_df = pd.DataFrame(pca.fit_transform(sc), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_PCA54={x:02}')
    pca_df = pd.merge(
        input_df, pca_df, left_on='subGameID', right_index=True, how='left')
    return reduce_mem_usage(pca_df)
from sklearn.decomposition import NMF
from sklearn.preprocessing import MinMaxScaler

# pivot tabel を用いた特徴量
def get_pivot_NMF18_features(input_df, n, value_col):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median)
    sc0 = MinMaxScaler().fit_transform(np.median(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,0::2,:], axis=-1))
    sc1 = MinMaxScaler().fit_transform(np.median(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,1::2,:], axis=-1))
    nmf = NMF(n_components=n, random_state=2021)
    nmf_df0 = pd.DataFrame(nmf.fit_transform(sc0), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_NMF9T={x:02}')
    nmf_df1 = pd.DataFrame(nmf.fit_transform(sc1), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_NMF9B={x:02}')
    nmf_df = pd.concat([nmf_df0, nmf_df1], axis=1)
    nmf_df = pd.merge(
        input_df, nmf_df, left_on='subGameID', right_index=True, how='left')
    return reduce_mem_usage(nmf_df)

# pivot tabel を用いた特徴量
def get_pivot_NMF27_features(input_df, n, value_col):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median)
    sc0 = MinMaxScaler().fit_transform(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,0::2].reshape(-1,27))
    sc1 = MinMaxScaler().fit_transform(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,1::2].reshape(-1,27))
    nmf = NMF(n_components=n, random_state=2021)
    nmf_df0 = pd.DataFrame(nmf.fit_transform(sc0), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_NMF27T={x:02}')
    nmf_df1 = pd.DataFrame(nmf.fit_transform(sc1), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_NMF27B={x:02}')
    nmf_df = pd.concat([nmf_df0, nmf_df1], axis=1)
    nmf_df = pd.merge(
        input_df, nmf_df, left_on='subGameID', right_index=True, how='left')
    return reduce_mem_usage(nmf_df)

# pivot tabel を用いた特徴量
def get_pivot_NMF54_features(input_df, n, value_col):
    pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median)
    sc = MinMaxScaler().fit_transform(pivot_df.fillna(0).values)
    nmf = NMF(n_components=n, random_state=2021)
    nmf_df = pd.DataFrame(nmf.fit_transform(sc), index=pivot_df.index).rename(
        columns=lambda x: f'pivot_{value_col}_NMF54={x:02}')
    nmf_df = pd.merge(
        input_df, nmf_df, left_on='subGameID', right_index=True, how='left')
    return reduce_mem_usage(nmf_df)

TF-IDF

def get_tfidf(input_df, term_col, document_col):
    output_df = input_df.copy()
    output_df['dummy'] = 0
    tf1 = output_df[[document_col, term_col, 'dummy']].groupby([document_col, term_col])['dummy'].count()
    tf1.name = 'tf1'
    tf2 = output_df[[document_col, term_col, 'dummy']].groupby([document_col])['dummy'].count()
    tf2.name = 'tf2'
    idf1 = output_df[document_col].nunique()
    idf2 = output_df[[document_col, term_col, 'dummy']].groupby([term_col])[document_col].nunique()
    idf2.name = 'idf2'
    output_df = pd.merge(output_df, tf1, left_on=[document_col, term_col], right_index=True, how='left')
    output_df = pd.merge(output_df, tf2, left_on=[document_col], right_index=True, how='left')
    output_df['idf1'] = idf1
    output_df = pd.merge(output_df, idf2, left_on=[term_col], right_index=True, how='left')
    col_name = 'tfidf_' + term_col + '_in_' + document_col
    tf = np.log(1 + (1 + output_df['tf1']) / (1 + output_df['tf2']))
    idf = 1 + np.log((1 + output_df['idf1']) / (1 + output_df['idf2']))
    output_df[col_name] = tf * idf
    return output_df.drop(['tf1', 'tf2', 'idf1', 'idf2', 'dummy'], axis=1)

打席スキップ数

def get_skip(input_df):
    output_df = input_df.copy()

    next_skip_map = {}
    prev_skip_map = {}
    for key, group in output_df.groupby(['subGameID', 'inningHalf']):
        n = len(group)
        dist_map = {}
        batter = group.sort_values('outCount')['batter']
        for i in range(n - 1):
            b1 = batter.iloc[i]
            for d in range(1, 5):
                if i + d >= n:
                    break
                b2 = batter.iloc[i + d]

                if (b1, b2) in dist_map.keys():
                    if dist_map[(b1, b2)] < d:
                        dist_map[(b1, b2)] = d
                else:
                    dist_map[(b1, b2)] = d
            
        for i in range(len(batter) - 1):
            next_skip_map[batter.index[i]] = dist_map[(batter.iloc[i], batter.iloc[i+1])]
        for i in range(1, len(batter)):
            prev_skip_map[batter.index[i]] = dist_map[(batter.iloc[i-1], batter.iloc[i])]

    output_df['next_skip'] = output_df.index.map(next_skip_map).fillna(0).astype(np.int8)
    output_df['prev_skip'] = output_df.index.map(prev_skip_map).fillna(0).astype(np.int8)
    return output_df

特徴量演算

# 特徴量作成用の関数を実行する関数
def preprocess(input_df, base_df):
    seed_everything(seed=SEED)
    output_df = input_df.copy()

    # aggrigation
    df = base_df.groupby(['gameID', 'outCount']).median().reset_index()
    agg_df = aggregation(df, ['gameID'], ['S', 'B', 'b1', 'b2', 'b3'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['gameID'], how='left')
    agg_df = aggregation(df, ['gameID', 'inningHalf'], ['S', 'B', 'b1', 'b2', 'b3'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['gameID', 'inningHalf'], how='left')
    agg_df = aggregation(df, ['b1_b2_b3'], ['S', 'B'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['b1_b2_b3'], how='left')
    agg_df = aggregation(df, ['B_S_O'], ['b1', 'b2', 'b3'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on= ['B_S_O'], how='left')
    agg_df = aggregation(df, ['ballIdx'], ['O', 'b1', 'b2', 'b3'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['ballIdx'], how='left')
    agg_df = aggregation(df, ['baseIdx'], ['B', 'S'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['baseIdx'], how='left')    
    agg_df = aggregation(df, ['inningNumber'], ['S', 'B', 'b1', 'b2', 'b3'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['inningNumber'], how='left')
    agg_df = aggregation(df, ['outCount'], ['S', 'B', 'b1', 'b2', 'b3'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['outCount'], how='left')
    agg_df = smooth_aggregation(df, ['pitcher'], ['baseIdx', 'ballIdx'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['pitcher'], how='left')
    output_df[agg_df.columns] = output_df[agg_df.columns].fillna(0)
    agg_df = smooth_aggregation(df, ['batter'], ['baseIdx', 'ballIdx'], ['mean', 'std'])
    output_df = pd.merge(output_df, agg_df, on=['batter'], how='left')
    output_df[agg_df.columns] = output_df[agg_df.columns].fillna(0)

    # pivot
    output_df = get_pivot_PCA18_features(output_df, n=4, value_col='ballIdx')
    output_df = get_pivot_PCA18_features(output_df, n=4, value_col='baseIdx')
    output_df = get_pivot_PCA27_features(output_df, n=6, value_col='ballIdx')
    output_df = get_pivot_PCA27_features(output_df, n=6, value_col='baseIdx')
    output_df = get_pivot_PCA54_features(output_df, n=8, value_col='ballIdx')
    output_df = get_pivot_PCA54_features(output_df, n=8, value_col='baseIdx')
    output_df = get_pivot_NMF18_features(output_df, n=2, value_col='ballIdx')
    output_df = get_pivot_NMF18_features(output_df, n=2, value_col='baseIdx')
    output_df = get_pivot_NMF27_features(output_df, n=2, value_col='ballIdx')
    output_df = get_pivot_NMF27_features(output_df, n=2, value_col='baseIdx')
    output_df = get_pivot_NMF54_features(output_df, n=2, value_col='ballIdx')
    output_df = get_pivot_NMF54_features(output_df, n=2, value_col='baseIdx')

    # next/previous
    output_df = get_next_data(output_df, value_col='b1_b2_b3', nan_value=8)
    output_df = get_next_diff(output_df, value_col='b1_b2_b3', nan_value=8)
    output_df = get_prev_data(output_df, value_col='b1_b2_b3', nan_value=8)
    output_df = get_prev_diff(output_df, value_col='b1_b2_b3', nan_value=8)
    output_df['runnerCombi'] = output_df['b1_b2_b3'] + 8 * output_df['next_b1_b2_b3']

    # TF-IDF
    output_df = get_tfidf(output_df, term_col='batter', document_col='subGameID')
    output_df = get_tfidf(output_df, term_col='b1_b2_b3', document_col='subGameID')
    output_df = get_tfidf(output_df, term_col='B_S_O', document_col='subGameID')

    # skip
    output_df = get_skip(output_df)    
    output_df['move4'] = (output_df['next_b1_b2_b3'] == 0) & (output_df['next_skip'] == 2)
    output_df['move3'] = (output_df['next_b1_b2_b3'] == 4) & (output_df['next_skip'] == 2)
    output_df['move2'] = (output_df['next_b1_b2_b3']%4 == 2) & (output_df['next_skip'] == 2)
    output_df['move1'] = (output_df['next_b1_b2_b3']%2 == 1) & (output_df['next_skip'] == 2)

    # target encoding
    enc_cols = [
        'bottomTeam', 'topTeam', 'pitcherCommon', 'batterCommon',
        'B', 'S', 'O', 'b1', 'b2', 'b3',
        'b1_b2_b3', 'B_S_O',
        'ballIdx', 'baseIdx',
        'next_b1_b2_b3', 'next_diff_b1_b2_b3', 'prev_b1_b2_b3', 'prev_diff_b1_b2_b3', 'runnerCombi',
    ]
    for col in enc_cols:
        for i in range(N_CLASS):
            output_df = target_encoding(output_df, col, 'gameID', f'y{i}')
    return reduce_mem_usage(output_df)

前処理実行

base_df = get_base_features(input_df)
display(base_df)
base_df.info()
sampling_df = random_sampling(base_df, n_sample=N_SAMPLE)
display(sampling_df)
sampling_df.info()
prep_df = preprocess(sampling_df, base_df)
prep_df.info()
del input_df, base_df, sampling_df
gc.collect()
# 欠損値表示
def display_missing(df):
    total = df.isnull().sum().sort_values(ascending=False)
    percent = total / df.shape[0]
    missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
    display(missing_data[missing_data['Total'] > 0])
pd.set_option('display.max_rows', 200)
display_missing(prep_df)

特徴量重要度計算

# 設定
N_FOLDS = 5
N_LOOPS = 3
SEED = 42
drop_cols = [
    'id',
    'gameID',
    'subGameID',

    'pitchType',
    'speed',
    'ballPositionLabel',
    'ballX',
    'ballY',
    'dir',
    'dist',
    'battingType',
    'isOuts',

    'startDayTime',
    'pitcher',
    'batter',
] + [f'y{i}' for i in range(8)]
target_col = 'y'
group_col = 'gameID'
tr_ratio = prep_df.loc[prep_df['y'].notnull(), 'B_S_O'].value_counts(normalize=True).sort_index()
ts_ratio = prep_df.loc[prep_df['y'].isnull(), 'B_S_O'].value_counts(normalize=True).sort_index()
ratio_dict = (ts_ratio / tr_ratio).to_dict()
sample_weight = prep_df.loc[prep_df['y'].notnull(), 'B_S_O'].map(ratio_dict)
def f1_macro(y_true, y_pred):
    return 'f1_macro', f1_score(y_true, np.argmax(y_pred.reshape(N_CLASS,-1), axis=0), average='macro'), True

def feature_importance(prep_df, drop_cols, target_col, group_col):
    lgb_params = {
        'objective': 'multiclass',
        'num_class': N_CLASS,
        'importance_type': 'gain',
        'n_jobs': -1,
        'class_weight': 'balanced',
        'random_state': SEED,

        'n_estimators': 500, 'learning_rate': 0.1,
        'boosting_type': 'gbdt',
        'num_leaves': 20, 'colsample_bytree': 0.6,
        'subsample': 0.9, 'subsample_freq': 4,
        'min_child_samples': 70, 'min_child_weight': 4, 'max_bin': 160,
        'reg_alpha': 0.002, 'reg_lambda': 0.0004
    }

    seed_everything(seed=SEED)
    train = prep_df[prep_df[target_col].notnull()]
    kf = GroupKFold(n_splits=N_FOLDS)

    y_oof = np.zeros(len(train), dtype=np.float32)
    importances = []
    for fold,(tr_idx,vl_idx) in enumerate(kf.split(X=train, groups=train[group_col])):
        tr_fold = train.iloc[tr_idx]
        vl_fold = train.iloc[vl_idx]
        X_train, y_train = tr_fold.drop([target_col] + drop_cols, axis=1), tr_fold[target_col]
        X_valid, y_valid = vl_fold.drop([target_col] + drop_cols, axis=1), vl_fold[target_col]

        model = lgb.LGBMClassifier(**lgb_params)
        model.fit(
            X_train, y_train,
            eval_set=(X_valid, y_valid),
            eval_metric=f1_macro,
            sample_weight=sample_weight.iloc[tr_idx],
            verbose=False,
            early_stopping_rounds=50
        )
        
        importances.append(
            pd.DataFrame(model.feature_importances_, index=X_train.columns, columns=['importance'])
        )

        y_oof[vl_idx] = model.predict(X_valid)
        score = f1_score(y_valid, y_oof[vl_idx], average='macro')
        print(f'fold:{fold}, score:{score}')

    score = f1_score(train[target_col], y_oof, average='macro')
    print(f'score:{score}')
    importance = pd.concat(importances, axis=1).mean(axis=1)
    return importance.sort_values(axis=0, ascending=False)
importance = feature_importance(prep_df, drop_cols, target_col, group_col)

学習&予測

# GroupKFold with random shuffle with a sklearn-like structure
from sklearn.model_selection import KFold
class RandomGroupKFold:
    def __init__(self, n_splits=4, shuffle=True, random_state=42):
        self.n_splits = n_splits
        self.shuffle = shuffle
        self.random_state = random_state

    def get_n_splits(self, X=None, y=None, groups=None):
        return self.n_splits

    def split(self, X=None, y=None, groups=None):
        kf = KFold(n_splits=self.n_splits, shuffle=self.shuffle, random_state=self.random_state)
        unique_ids = groups.unique()
        for tr_group_idx, va_group_idx in kf.split(unique_ids):
            # split group
            tr_group, va_group = unique_ids[tr_group_idx], unique_ids[va_group_idx]
            train_idx = np.where(groups.isin(tr_group))[0]
            val_idx = np.where(groups.isin(va_group))[0]
            yield train_idx, val_idx
# 設定
N_FOLDS = 5
N_LOOPS = 5
drop_cols += importance.index[200:].to_list()
def f1_macro(y_true, y_pred):
    return 'f1_macro', f1_score(y_true, np.argmax(y_pred.reshape(N_CLASS,-1), axis=0), average='macro'), True

def train_predict(prep_df, drop_cols, target_col, group_col):

    lgb_params = {
        'objective': 'multiclass',
        'num_class': N_CLASS,
        'importance_type': 'gain',
        'n_jobs': -1,
        'class_weight': 'balanced',

        'n_estimators': 500, 'learning_rate': 0.1,
        'boosting_type': 'gbdt',
        'num_leaves': 28, 'colsample_bytree': 0.5578623473768867,
        'subsample': 0.3346569905107538, 'subsample_freq': 53,
        'min_child_samples': 92, 'min_child_weight': 48.29721873685813, 'max_bin': 172,
        'reg_alpha': 0.01599491014809227, 'reg_lambda': 0.00011822980622796684
    }

    seed_everything(seed=SEED)
    train = prep_df[prep_df[target_col].notnull()]
    test = prep_df[prep_df[target_col].isnull()]
    y_preds = []
    scores = []
    for n in range(N_LOOPS):

        kf = RandomGroupKFold(n_splits=N_FOLDS, random_state=SEED + n)
        lgb_params['random_state'] = SEED + n

        y_oof = np.zeros(len(train), dtype=np.float32)
        for fold, (tr_idx, vl_idx) in enumerate(kf.split(X=train, groups=train[group_col])):
            tr_fold = train.iloc[tr_idx]
            vl_fold = train.iloc[vl_idx]
            X_train, y_train = tr_fold.drop([target_col] + drop_cols, axis=1), tr_fold[target_col]
            X_valid, y_valid = vl_fold.drop([target_col] + drop_cols, axis=1), vl_fold[target_col]
            X_test = test.drop([target_col] + drop_cols, axis=1)

            model = lgb.LGBMClassifier(**lgb_params)
            model.fit(
                X_train, y_train,
                eval_set=(X_valid, y_valid),
                eval_metric=f1_macro,#'logloss',
                sample_weight=sample_weight.iloc[tr_idx],
                verbose=False,
                early_stopping_rounds=100 if lgb_params['boosting_type'] != 'dart' else None
            )

            y_oof[vl_idx] = model.predict(X_valid)
            score = f1_score(y_valid, y_oof[vl_idx], average='macro')
            print(f'loop:{n}, fold:{fold}, score:{score}')
            y_preds.append(model.predict_proba(X_test))

        score = f1_score(train[target_col], y_oof, average='macro')
        print(f'loop:{n}, score:{score}')
        scores.append(score)
    
    y_pred = np.mean(y_preds, axis=0)
    score = np.mean(scores)
    print(f'score ave.:{np.mean(score)}')
    return y_pred, score
y_pred, score = train_predict(prep_df, drop_cols, target_col, group_col)
#テスト結果の出力
submit_df = pd.DataFrame({'y': y_pred.argmax(axis=1).astype(int)})
submit_df.index.name = 'id'
submit_df.to_csv(f'sub_{score:.4f}.csv')

添付データ

  • best_0.2285.ipynb?X-Amz-Expires=10800&X-Amz-Date=20240918T181923Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIP7GCBGMWPMZ42PQ
  • Favicon
    new user
    コメントするには 新規登録 もしくは ログイン が必要です。