model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same',
activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same',
activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same',
activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same',
activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.0001)
epochs = 1 # Turn epochs to 30 to get 0.9967 accuracy
batch_size = 86
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range=0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(X_train)