Oregin
日本画の登場人物分類のサンプルコードです。ご参考までご活用ください。
※Google Colab(GPU)で実行可能です。
LB=0.655 でした。
ディレクトリ構成
# カレントディレクトリをnotebook,result,dataディレクトリが格納されているディレクトリに移動
%cd /xxxx/xxxx
imagehash
のインストール類似画像を確認するために imagehash
をインストールします。類似画像の確認を行わない場合は以下のインストールは不要です。
!pip install imagehash
Collecting imagehash Downloading ImageHash-4.2.1.tar.gz (812 kB) K |████████████████████████████████| 812 kB 4.5 MB/s ent already satisfied: six in /usr/local/lib/python3.7/dist-packages (from imagehash) (1.15.0) Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from imagehash) (1.21.6) Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from imagehash) (1.4.1) Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from imagehash) (7.1.2) Requirement already satisfied: PyWavelets in /usr/local/lib/python3.7/dist-packages (from imagehash) (1.3.0) Building wheels for collected packages: imagehash Building wheel for imagehash (setup.py) ... ?25lagehash: filename=ImageHash-4.2.1-py2.py3-none-any.whl size=295206 sha256=60576e9c9339913c181613cb26ec1bc67036245823b0143bc9b7abc45d635393 Stored in directory: /root/.cache/pip/wheels/4c/d5/59/5e3e297533ddb09407769762985d134135064c6831e29a914e Successfully built imagehash Installing collected packages: imagehash Successfully installed imagehash-4.2.1
import google.colab
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from sklearn.model_selection import train_test_split
import time
import gc
from sklearn.metrics import accuracy_score,f1_score
import torch.cuda
import torch.nn as nn
import torch.optim as optim
import torch.autograd as autograd
import torch.utils.data as dataset
import torchvision.models as models
import albumentations
import imagehash
import argparse
import os
import tqdm
import random
import csv
DATA_DIR = './data/'
RANDOM_SEED = 2019
random.seed(RANDOM_SEED)
os.environ['PYTHONHASHSEED'] = str(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed(RANDOM_SEED)
torch.torch.backends.cudnn.benchmark = True
torch.torch.backends.cudnn.enabled = True
train_labels = np.load(os.path.join(DATA_DIR, 'train_data.npz'))['arr_1']
train_labels = train_labels.astype('int64')
train_images = np.load(os.path.join(DATA_DIR, 'train_data.npz'))['arr_0']
test_images = np.load(os.path.join(DATA_DIR, 'test_data.npz'))['arr_0']
print('train-labels: shape={}, dtype={}'.format(train_labels.shape, train_labels.dtype))
print('train-images: shape={}, dtype={}'.format(train_images.shape, train_images.dtype))
print('test-images: shape={}, dtype={}'.format(test_images.shape, test_images.dtype))
train-labels: shape=(6446,), dtype=int64 train-images: shape=(6446, 256, 256, 3), dtype=uint8 test-images: shape=(2000, 256, 256, 3), dtype=uint8
学習データに含まれる各ラベルのデータ数を確認。0, 1
は多いですが、2, 3
は少なめです。
# 各クラスのデータ数
print('train-labels: min={}, max={}'.format(np.min(train_labels), np.max(train_labels)))
axis = plt.figure().add_subplot(1, 1, 1)
axis.set_xlabel('label')
axis.set_ylabel('# of images')
axis.hist(train_labels)
plt.show()
train-labels: min=0, max=3
クラス2は、特徴的な絵になっています。
# 各クラスの画像を表示してみる
images = [[] for _ in range(4)]
for image, label in zip(train_images, train_labels):
images[label].append(image)
figure = plt.figure(figsize=(8, 8))
for i in range(4):
for j, img in enumerate(images[i][:5]):
axis = figure.add_subplot(4, 5, i * 5 + j + 1)
axis.imshow(img)
axis.tick_params(labelbottom=False, labelleft=False, bottom=False, left=False)
axis.set_xlabel(f'class={i}')
plt.show()
非常に似ている画像が存在しています。
背景など微妙に異なるものがありますが、テーマが同じであったり模写した絵なのかもしれません。
テストデータの中にも類似していると思われる画像を確認できます。
data = [[f'train_{t}_{i}', x, None] for i, (x, t) in enumerate(zip(train_images, train_labels))]
data.extend([f'test_{i}', x, None] for i, x in enumerate(test_images))
for i in tqdm.tqdm(range(len(data)), desc='hashing'):
data[i][2] = imagehash.phash(Image.fromarray(data[i][1]))
threshold = 10
clusters = []
for x in tqdm.tqdm(data, desc='clustering'):
for c in clusters:
for _, _, h in c:
if h - x[2] < threshold:
c.append(x)
x = None
break
if x is None:
break
if x is not None:
clusters.append([x])
hashing: 100%|██████████| 8446/8446 [00:09<00:00, 907.02it/s] clustering: 100%|██████████| 8446/8446 [02:39<00:00, 53.00it/s]
dups = [c for c in clusters if len(c) > 2]
print(f'{len(dups)} duplications are found')
figure = plt.figure(figsize=(8, 60))
for i, dup in enumerate(dups):
for j, (n, x, _) in enumerate(dup[:5]):
axis = figure.add_subplot(len(dups), 5, i * 5 + j + 1)
axis.imshow(x)
axis.tick_params(labelbottom=False, labelleft=False, bottom=False, left=False)
axis.set_xlabel(n)
plt.show()
39 duplications are found
モデルはResNet18を使用。学習済みパラメータを使わず、ネットワークの定義だけを使っています。
model = models.resnet18(pretrained=False, num_classes=4)
model.cuda()
ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): BasicBlock( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (1): BasicBlock( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer2): Sequential( (0): BasicBlock( (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer3): Sequential( (0): BasicBlock( (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (layer4): Sequential( (0): BasicBlock( (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (fc): Linear(in_features=512, out_features=4, bias=True) )
データ拡張はhorizontal flipのみを使用。今回の画像データは(width, height, channels)
の形式になっていますが、PyTorchの入力データとするために(channels, width, height)
の形式に変更しています。
class Dataset(dataset.Dataset):
def __init__(self, images, labels, train=False):
super().__init__()
transforms = []
if train:
transforms.append(albumentations.HorizontalFlip(p=0.5))
transforms.append(albumentations.ToFloat())
self.transform = albumentations.Compose(transforms)
self.images = images
self.labels = labels
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = np.rollaxis(self.transform(image=self.images[idx])['image'], 2, 0)
label = self.labels[idx]
return image, label
train_x, valid_x, train_y, valid_y = train_test_split(
train_images, train_labels, test_size=0.2, random_state=RANDOM_SEED)
train_loader = dataset.DataLoader(
Dataset(train_x, train_y, train=True), batch_size=64, shuffle=True)
valid_loader = dataset.DataLoader(
Dataset(valid_x, valid_y), batch_size=64, shuffle=False)
optimizerはadam(学習係数は0.001)を使用しています。
def perform(model, loader, optimizer):
loss_total = 0
accuracy_total = 0
count = 0
for images, labels in loader:
images = images.cuda()
onehot = torch.eye(4)[labels]
onehot = onehot.cuda()
labels = labels.cuda()
preds = model(images)
loss = nn.functional.cross_entropy(preds, onehot)
with torch.no_grad():
accuracy = torch.mean((torch.max(preds, dim=1)[1] == labels).float())
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_total += float(loss.detach()) * len(images)
accuracy_total += float(accuracy.detach()) * len(images)
count += len(images)
return loss_total / count, accuracy_total / count
optimizer = optim.Adam(model.parameters(), lr=0.001)
log = []
for epoch in range(20):
model.train()
with autograd.detect_anomaly():
train_loss, train_accuracy = perform(model, train_loader, optimizer)
model.eval()
with torch.no_grad():
valid_loss, valid_accuracy = perform(model, valid_loader, None)
print('[{}] train(loss/accuracy)={:.2f}/{:.2f}, valid(loss/accuracy)={:.2f}/{:.2f}'.format(
epoch + 1, train_loss, train_accuracy, valid_loss, valid_accuracy))
log.append((epoch + 1, train_loss, train_accuracy, valid_loss, valid_accuracy))
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:36: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging. [1] train(loss/accuracy)=1.07/0.55, valid(loss/accuracy)=1.19/0.54 [2] train(loss/accuracy)=0.95/0.61, valid(loss/accuracy)=1.56/0.45 [3] train(loss/accuracy)=0.89/0.65, valid(loss/accuracy)=1.01/0.58 [4] train(loss/accuracy)=0.84/0.68, valid(loss/accuracy)=0.97/0.62 [5] train(loss/accuracy)=0.81/0.68, valid(loss/accuracy)=1.16/0.56 [6] train(loss/accuracy)=0.75/0.72, valid(loss/accuracy)=0.82/0.67 [7] train(loss/accuracy)=0.71/0.73, valid(loss/accuracy)=2.19/0.36 [8] train(loss/accuracy)=0.69/0.73, valid(loss/accuracy)=0.83/0.67 [9] train(loss/accuracy)=0.65/0.75, valid(loss/accuracy)=1.02/0.61 [10] train(loss/accuracy)=0.62/0.76, valid(loss/accuracy)=1.17/0.58 [11] train(loss/accuracy)=0.59/0.78, valid(loss/accuracy)=0.71/0.73 [12] train(loss/accuracy)=0.56/0.78, valid(loss/accuracy)=0.95/0.63 [13] train(loss/accuracy)=0.54/0.80, valid(loss/accuracy)=0.73/0.72 [14] train(loss/accuracy)=0.49/0.81, valid(loss/accuracy)=0.81/0.69 [15] train(loss/accuracy)=0.48/0.81, valid(loss/accuracy)=1.64/0.47 [16] train(loss/accuracy)=0.44/0.83, valid(loss/accuracy)=1.07/0.65 [17] train(loss/accuracy)=0.43/0.84, valid(loss/accuracy)=0.95/0.70 [18] train(loss/accuracy)=0.38/0.86, valid(loss/accuracy)=0.69/0.74 [19] train(loss/accuracy)=0.34/0.87, valid(loss/accuracy)=0.89/0.72 [20] train(loss/accuracy)=0.32/0.88, valid(loss/accuracy)=0.81/0.73
figure = plt.figure(figsize=(8, 3))
axis = figure.add_subplot(1, 2, 1)
axis.plot([x[0] for x in log], [x[1] for x in log], label='train')
axis.plot([x[0] for x in log], [x[3] for x in log], label='valid')
axis.set_xlabel('epoch')
axis.set_ylabel('loss')
axis.legend()
axis = figure.add_subplot(1, 2, 2)
axis.plot([x[0] for x in log], [x[2] for x in log], label='train')
axis.plot([x[0] for x in log], [x[4] for x in log], label='valid')
axis.set_xlabel('epoch')
axis.set_ylabel('accuracy')
axis.legend()
plt.show()
dummy_labels = np.zeros((test_images.shape[0], 1), dtype=np.int64)
test_loader = dataset.DataLoader(
Dataset(test_images, dummy_labels), batch_size=64, shuffle=False)
test_labels = []
model.eval()
for images, _ in test_loader:
images = images.cuda()
with torch.no_grad():
preds = model(images)
preds = torch.max(preds, dim=1)[1]
test_labels.extend(int(x) for x in preds)
with open('./result/submission.csv', 'w') as writer:
csv_writer = csv.writer(writer)
csv_writer.writerow(('id', 'y'))
csv_writer.writerows((i + 1, x) for i, x in enumerate(test_labels))
google.colab.files.download('./result/submission.csv')
PN_12
Hi,Do you have data links available for download, I am getting error while using command np.load on npz files?