不動産価格はいくらになる?
hirayuki
[動作環境] Google colaboratory
from google.colab import drive drive.mount('/content/drive/')
Drive already mounted at /content/drive/; to attempt to forcibly remount, call drive.mount("/content/drive/", force_remount=True).
# ご自身の環境に合わせてください %cd /content/drive/My\ Drive/予測コンペ/ProbSpace/不動産取引価格予測 !ls
/content/drive/My Drive/予測コンペ/ProbSpace/不動産取引価格予測 estate_estimation_prediction.ipynb test_data.csv published_land_price.csv train_data.csv
import featuretools as ft import lightgbm as lgb #import optuna import numpy as np import sklearn.datasets import sklearn.metrics import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf import xgboost as xgb import seaborn as sns from tensorflow import keras import keras.layers as L from keras.models import Model from sklearn.decomposition import PCA from keras import losses from sklearn import preprocessing from sklearn.metrics import log_loss from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler
!pip install japanize-matplotlib import japanize_matplotlib !pip install jeraconv from jeraconv import jeraconv
Requirement already satisfied: japanize-matplotlib in /usr/local/lib/python3.6/dist-packages (1.0.5) Collecting jeraconv Downloading https://files.pythonhosted.org/packages/b6/b0/c4471ecae4fa8ba6143cd828bcc739d1ae442cc668d86eed4ac26a91d1a9/jeraconv-0.2.1-py3-none-any.whl Installing collected packages: jeraconv Successfully installed jeraconv-0.2.1
train = pd.read_csv("train_data.csv") print("train shape is " + str(train.shape)) train.head()
train shape is (356344, 28)
test = pd.read_csv("test_data.csv") iddf = test[["id"]] print("test shape is " + str(test.shape)) test.head()
test shape is (34844, 27)
for i, val in enumerate(train.columns): print("====================") print(i, val) if val == "id": continue train[val].value_counts(dropna=False).plot.bar(figsize=(19, 3), fontsize=18, title=val) plt.show()
==================== 0 id ==================== 1 種類
==================== 2 地域
==================== 3 市区町村コード
==================== 4 都道府県名
==================== 5 市区町村名
==================== 6 地区名
==================== 7 最寄駅:名称
==================== 8 最寄駅:距離(分)
==================== 9 間取り
==================== 10 面積(㎡)
==================== 11 土地の形状
==================== 12 間口
==================== 13 延床面積(㎡)
==================== 14 建築年
==================== 15 建物の構造
==================== 16 用途