使用デバイス: cpu
-----start-------
/Users/takanokaito/env/lib/python3.7/site-packages/torchtext/data/batch.py:23: UserWarning: Batch class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information.
warnings.warn('{} class will be retired in the 0.8.0 release and moved to torchtext.legacy. Please see 0.7.0 release notes for further information.'.format(self.__class__.__name__), UserWarning)
イテレーション 10 || Loss: 0.6992 || 10iter: 314.6658 sec. || 本イテレーションの正解率:0.21875
tensor([1, 0, 1, 1, 1, 1, 1, 1, 1, 1])
イテレーション 20 || Loss: 0.6841 || 10iter: 316.3488 sec. || 本イテレーションの正解率:0.53125
tensor([0, 0, 0, 1, 0, 0, 1, 1, 0, 1])
イテレーション 30 || Loss: 0.6945 || 10iter: 309.8897 sec. || 本イテレーションの正解率:0.5625
tensor([0, 1, 1, 0, 1, 1, 1, 0, 0, 1])
イテレーション 40 || Loss: 0.6443 || 10iter: 308.1357 sec. || 本イテレーションの正解率:0.5625
tensor([1, 0, 0, 1, 1, 0, 1, 0, 0, 0])
イテレーション 50 || Loss: 0.6574 || 10iter: 311.2739 sec. || 本イテレーションの正解率:0.5
tensor([1, 1, 1, 0, 0, 1, 1, 0, 0, 1])
Epoch 1/5 | train | Loss: 0.6825 Acc: 0.4314
f1_score 0.1858974358974359
Epoch 1/5 | val | Loss: 0.6598 Acc: 0.6596
f1_score 0.30434782608695654
イテレーション 10 || Loss: 0.6127 || 10iter: 309.3094 sec. || 本イテレーションの正解率:0.59375
tensor([0, 0, 0, 0, 0, 0, 1, 1, 0, 1])
イテレーション 20 || Loss: 0.6042 || 10iter: 307.4083 sec. || 本イテレーションの正解率:0.5
tensor([1, 1, 1, 1, 1, 1, 1, 1, 0, 1])
イテレーション 30 || Loss: 0.5008 || 10iter: 309.7979 sec. || 本イテレーションの正解率:0.96875
tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
イテレーション 40 || Loss: 0.4990 || 10iter: 311.8554 sec. || 本イテレーションの正解率:0.8125
tensor([0, 1, 1, 0, 1, 0, 0, 0, 0, 1])
イテレーション 50 || Loss: 0.5484 || 10iter: 312.6560 sec. || 本イテレーションの正解率:0.84375
tensor([0, 0, 1, 0, 0, 0, 0, 0, 0, 0])
Epoch 2/5 | train | Loss: 0.5198 Acc: 0.7879
f1_score 0.3955342902711324
Epoch 2/5 | val | Loss: 0.3021 Acc: 0.9681
f1_score 0.8421052631578948
イテレーション 10 || Loss: 0.2054 || 10iter: 314.0214 sec. || 本イテレーションの正解率:0.96875
tensor([0, 0, 0, 0, 0, 0, 0, 0, 1, 0])
イテレーション 20 || Loss: 0.2310 || 10iter: 301.7984 sec. || 本イテレーションの正解率:0.96875
tensor([0, 0, 0, 0, 1, 1, 0, 0, 0, 0])
イテレーション 30 || Loss: 0.1743 || 10iter: 305.6015 sec. || 本イテレーションの正解率:0.9375
tensor([0, 0, 1, 0, 0, 0, 0, 0, 0, 0])
イテレーション 40 || Loss: 0.1855 || 10iter: 300.2320 sec. || 本イテレーションの正解率:0.96875
tensor([1, 0, 1, 0, 1, 0, 0, 0, 0, 0])
イテレーション 50 || Loss: 0.1402 || 10iter: 300.8098 sec. || 本イテレーションの正解率:0.9375
tensor([1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
Epoch 3/5 | train | Loss: 0.2479 Acc: 0.9407
f1_score 0.7389162561576356
Epoch 3/5 | val | Loss: 0.1817 Acc: 0.9787
f1_score 0.9
イテレーション 10 || Loss: 0.1093 || 10iter: 308.6435 sec. || 本イテレーションの正解率:0.9375
tensor([1, 1, 0, 1, 1, 0, 0, 0, 0, 0])
イテレーション 20 || Loss: 0.3410 || 10iter: 299.6432 sec. || 本イテレーションの正解率:0.9375
tensor([0, 0, 0, 1, 0, 0, 0, 0, 0, 0])
イテレーション 30 || Loss: 0.1796 || 10iter: 299.2126 sec. || 本イテレーションの正解率:0.90625
tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
イテレーション 40 || Loss: 0.0584 || 10iter: 300.2765 sec. || 本イテレーションの正解率:1.0
tensor([0, 0, 0, 0, 0, 0, 0, 0, 1, 0])
イテレーション 50 || Loss: 0.0743 || 10iter: 309.4848 sec. || 本イテレーションの正解率:0.96875
tensor([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])
Epoch 4/5 | train | Loss: 0.1324 Acc: 0.9659
f1_score 0.8355795148247979
Epoch 4/5 | val | Loss: 0.1379 Acc: 0.9255
f1_score 0.7407407407407407
イテレーション 10 || Loss: 0.0915 || 10iter: 302.7578 sec. || 本イテレーションの正解率:1.0
tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0])
イテレーション 20 || Loss: 0.0432 || 10iter: 303.4872 sec. || 本イテレーションの正解率:1.0
tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
イテレーション 30 || Loss: 0.0363 || 10iter: 305.0603 sec. || 本イテレーションの正解率:1.0
tensor([0, 0, 0, 0, 0, 0, 0, 1, 0, 0])
イテレーション 40 || Loss: 0.0462 || 10iter: 303.0074 sec. || 本イテレーションの正解率:1.0
tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
イテレーション 50 || Loss: 0.1114 || 10iter: 301.9711 sec. || 本イテレーションの正解率:0.96875
tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Epoch 5/5 | train | Loss: 0.0856 Acc: 0.9743
f1_score 0.8736263736263736
Epoch 5/5 | val | Loss: 0.1774 Acc: 0.9681
f1_score 0.8571428571428572