BERT特徴量を使ったBaselineの実装

概要

  • BERTを使って文章をベクトル化します
  • 本ノートブックを実行すると、CV: 365.48106、Public LB: 498.58349となります
  • CV/LBで乖離しているので、もしかしたらコード間違っているかもしれません。間違った箇所を見つけたらご指摘いただけると嬉しいです
  • 今後の修正内容として以下が考えられます
    • 他のBERTの事前学習済みモデルを試す
    • 文章の前処理を実施する
    • BERTのmax_lenやPCAのn_componentsの数を変えてみる

事前準備

# mount drive

from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
# 必要なライブラリのインストール
!pip install -q transformers > /dev/null

設定

# カレントディレクトリを変更
import os
os.chdir('/content/drive/My Drive/Colab Notebooks/probspace/kiva/')
print(os.getcwd())
/content/drive/My Drive/Colab Notebooks/probspace/kiva
class Config():
    root_path = './'
    input_path = os.path.join(root_path, 'data')
    output_path = os.path.join(root_path, 'output')
    bert_model_name = 'bert-base-uncased'
    seed = 42
    debug = False
# create dirs

for dir in [Config.output_path]:
    os.makedirs(dir, exist_ok=True)
import datetime
import itertools
import matplotlib.pylab as plt
import numpy as np
import pandas as pd
import random
import pickle
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import KFold
import torch
from tqdm import tqdm

# NLP
from sklearn.decomposition import PCA
import transformers
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

# Model
import lightgbm as lgb

pd.set_option('max_columns', None)
pd.options.display.float_format = '{:.5f}'.format
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data]   Unzipping corpora/stopwords.zip.
def seed_everything(seed=2021):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    

seed_everything(Config.seed)

データの読み込み

train_df = pd.read_csv(os.path.join(Config.input_path, 'train.csv'))
if Config.debug:
    train_df = train_df[:1000]
print(train_df.shape)
display(train_df)
(91333, 18)
LOAN_ID ORIGINAL_LANGUAGE DESCRIPTION DESCRIPTION_TRANSLATED LOAN_AMOUNT IMAGE_ID ACTIVITY_NAME SECTOR_NAME LOAN_USE COUNTRY_CODE COUNTRY_NAME TOWN_NAME CURRENCY_POLICY CURRENCY_EXCHANGE_COVERAGE_RATE CURRENCY TAGS REPAYMENT_INTERVAL DISTRIBUTION_MODEL
0 1733169 English Teodora is a 50-year-old married woman from th... Teodora is a 50-year-old married woman from th... 100 3115271 Weaving Arts to purchase materials like nipa palm, bamboo ... PH Philippines Maribojoc, Bohol shared 0.10000 PHP #Elderly monthly field_partner
1 1546998 English Diego is 32 years old and lives in the municip... Diego is 32 years old and lives in the municip... 1350 2870403 Barber Shop Services to buy two hair clippers, a new barber chair, ... CO Colombia Apartadó shared 0.10000 COP user_favorite, user_favorite monthly field_partner
2 1808517 Spanish Osman, es un joven de 27 años de edad, soltero... Osman is a young man, 27 years old, single, an... 225 3215705 Farming Agriculture to purchase sacks of fertilizers to care for a... HN Honduras Nueva Frontera, Santa Barbara. shared 0.10000 HNL NaN bullet field_partner
3 1452940 English His name is Nino, 31 years old, married to Che... His name is Nino, 31 years old, married to Che... 350 2745031 Motorcycle Transport Transportation to pay for fuel, tires and change oil for his ... PH Philippines Silang, Cavite shared 0.10000 PHP user_favorite monthly field_partner
4 1778420 English Pictured above is Teresa, often described as a... Pictured above is Teresa, often described as a... 625 3083800 Farming Agriculture to purchase hybrid seeds and fertilizer to imp... KE Kenya Mumias shared 0.10000 KES #Eco-friendly, #Sustainable Ag, #Parent, #Elde... bullet field_partner
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
91328 1688789 Spanish Rider tiene 20 años de edad, vive en San Javie... Rider is 20 years old. He lives in San Javier,... 775 3054018 Poultry Agriculture to buy chickens to raise and sell. EC Ecuador San Javier shared 0.10000 USD volunteer_like, #Animals, #Supporting Family monthly field_partner
91329 1878119 English Carmelita works hard to support four children.... Carmelita works hard to support four children.... 100 3311100 Personal Housing Expenses Housing to build a sanitary toilet for her family PH Philippines Danao Cebu standard nan PHP volunteer_like monthly field_partner
91330 1639680 English Orn, 60 years of age, appears in the photo. Sh... Orn, 60 years of age, appears in the photo. Sh... 1500 2990352 Grocery Store Food to pay for additional groceries to stock the s... KH Cambodia Takeo province shared 0.10000 USD user_favorite, #Elderly, user_favorite monthly field_partner
91331 1495391 Spanish Walter, a sus 27 años de edad, vive en unión l... At 27 years of age, Walter is in a live-in rel... 1750 2805390 Farming Agriculture to buy agricultural supplies, such as fertiliz... CO Colombia El Carmen de Viboral shared 0.10000 COP #Sustainable Ag, #Eco-friendly, user_favorite monthly field_partner
91332 1602898 English Greetings from Uganda! This is Godfrey. He is ... Greetings from Uganda! This is Godfrey. He is ... 275 2943724 Education provider Education to purchase a water-filtration system to provi... UG Uganda Isingiro shared 0.10000 UGX #Health and Sanitation, user_favorite, #School... irregular field_partner

91333 rows × 18 columns

test_df = pd.read_csv(os.path.join(Config.input_path, 'test.csv'))
if Config.debug:
    test_df = test_df[:1000]
print(test_df.shape)
display(test_df)
(91822, 17)
LOAN_ID ORIGINAL_LANGUAGE DESCRIPTION DESCRIPTION_TRANSLATED IMAGE_ID ACTIVITY_NAME SECTOR_NAME LOAN_USE COUNTRY_CODE COUNTRY_NAME TOWN_NAME CURRENCY_POLICY CURRENCY_EXCHANGE_COVERAGE_RATE CURRENCY TAGS REPAYMENT_INTERVAL DISTRIBUTION_MODEL
0 2041445 English Marcela is 69 years old and married with ten c... Marcela is 69 years old and married with ten c... 4051101 General Store Retail to buy items to sell like canned goods and per... PH Philippines Cauayan, Negros Occidental standard nan PHP NaN monthly field_partner
1 1944435 English Roselia is 48 years old and has five children.... Roselia is 48 years old and has five children.... 3410523 Pigs Agriculture to buy feeds and other supplies to raise her pig PH Philippines Guihulngan, Negros Oriental standard nan PHP #Animals, #Repeat Borrower, #Schooling, #Woman... monthly field_partner
2 2083354 English Ma. Marebil is a single woman, 40 years old wi... Ma. Marebil is a single woman, 40 years old wi... 4146690 Clothing Sales Clothing to buy additional stock of clothes and dresses... PH Philippines Santa Barbara, Iloilo standard nan PHP #Parent, #Single Parent, #Woman-Owned Business monthly field_partner
3 1993565 English Good day, lenders! Meet one of KBMI’s clients,... Good day, lenders! Meet one of KBMI’s clients,... 3945982 Food Food to buy more foods to grow her business. ID Indonesia Pandeglang shared 0.10000 IDR #Woman-Owned Business, #Schooling, #Elderly, #... monthly field_partner
4 2064272 English Rosemarie is a married woman with two children... Rosemarie is a married woman with two children... 4114040 Food Food to buy ingredients for her food production bus... PH Philippines Sogod Cebu standard nan PHP NaN monthly field_partner
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
91817 1993862 English Marjorie is a resident of Tubigon, Bohol. She ... Marjorie is a resident of Tubigon, Bohol. She ... 3946629 Fishing Food to buy fishing nets. PH Philippines Tubigon, Bohol shared 0.00000 PHP #Parent, #Biz Durable Asset monthly field_partner
91818 2015070 English Hello, Kiva community! Meet Janeth, a mother e... Hello, Kiva community! Meet Janeth, a mother e... 4006025 Home Energy Personal Use to buy a solar lantern to provide adequate lig... KE Kenya Nandi Hills shared 0.00000 KES #Technology, #Eco-friendly, #Parent monthly field_partner
91819 1950349 French Agé de 32 ans, Komi est marié .C'est un bouche... Komi is 32 years old and married. He is a reno... 3423123 Butcher Shop Food to buy two cows. TG Togo Vakpossito shared 0.00000 XOF #Biz Durable Asset, user_favorite, #Animals monthly field_partner
91820 1921580 Russian Калбубу, 56 лет, вдова, есть взрослые дети. У ... Kalbubu is 56 years old, a widow, and she has ... 3373358 Dairy Agriculture to buy dairy cows to increase her headcount of... KG Kyrgyzstan Min-Bulak village, Talas region shared 0.00000 KGS #Animals, #Widowed, #Biz Durable Asset, #Woman... irregular field_partner
91821 1976733 English Hinrilyn is 31 years old and has two children.... Hinrilyn is 31 years old and has two children.... 3841884 Pigs Agriculture to buy feeds and other supplies to raise her l... PH Philippines Coron, Palawan standard nan PHP user_favorite, #Animals, #Parent, user_favorit... monthly field_partner

91822 rows × 17 columns

BERTによる文章のベクトル化

columbia2131さんが以前に投稿されていたトピックを参考にしています。

[SciBERTを用いたtextデータの特徴量抽出](https://comp.probspace.com/competitions/citation_prediction/discussions/columbia2131-Post0cf3bc9feaa1640eee20)

class BertSequenceVectorizer:
    """
    事前学習済み BERT モデルを使ったテキスト特徴抽出
    """
    def __init__(self, model_name='bert-base-uncased', max_len=128):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model_name = model_name
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
        self.model = transformers.AutoModel.from_pretrained(self.model_name)
        self.model = self.model.to(self.device)
        self.max_len = max_len

    def vectorize(self, sentence : str) -> np.array:
        inp = self.tokenizer.encode(sentence)
        len_inp = len(inp)

        if len_inp >= self.max_len:
            inputs = inp[:self.max_len]
            masks = [1] * self.max_len
        else:
            inputs = inp + [0] * (self.max_len - len_inp)
            masks = [1] * len_inp + [0] * (self.max_len - len_inp)

        inputs_tensor = torch.tensor([inputs], dtype=torch.long).to(self.device)
        masks_tensor = torch.tensor([masks], dtype=torch.long).to(self.device)

        output = self.model(inputs_tensor, masks_tensor)
        seq_out = output['last_hidden_state']

        if torch.cuda.is_available():    
            return seq_out[0][0].cpu().detach().numpy()
        else:
            return seq_out[0][0].detach().numpy()
def get_bert_feature(input_df):
    vectorizer = BertSequenceVectorizer(model_name=Config.bert_model_name)
    texts = input_df['DESCRIPTION_TRANSLATED'].fillna('')
    text_vecs = np.array([vectorizer.vectorize(x) for x in texts])
    pca = PCA(n_components=64)
    text_vecs = pca.fit_transform(text_vecs)

    output_df = pd.DataFrame(text_vecs, columns=[f'bert_pca_vecs={i:03}' for i in range(text_vecs.shape[1])])
    output_df.index = input_df.index
    return output_df
train_bert = get_bert_feature(train_df)
test_bert = get_bert_feature(test_df)
Downloading:   0%|          | 0.00/28.0 [00:00<?, ?B/s]
Downloading:   0%|          | 0.00/570 [00:00<?, ?B/s]
Downloading:   0%|          | 0.00/226k [00:00<?, ?B/s]
Downloading:   0%|          | 0.00/455k [00:00<?, ?B/s]
Downloading:   0%|          | 0.00/420M [00:00<?, ?B/s]
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Token indices sequence length is longer than the specified maximum sequence length for this model (570 > 512). Running this sequence through the model will result in indexing errors
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Token indices sequence length is longer than the specified maximum sequence length for this model (515 > 512). Running this sequence through the model will result in indexing errors

学習

model_params = {
    'n_estimators': 1000,
    'objective': 'mae',
    'learning_rate': 0.1,
    'random_state': Config.seed,
    'n_jobs': -1,
}

fit_params = {
    'early_stopping_rounds': 100,
    'verbose': False
}
def make_kf(X, y, n_splits=5):
    kf = KFold(n_splits=n_splits, shuffle=True, random_state=Config.seed)
    return list(kf.split(X))
def train_cv(X, y, model, model_params, fit_params, cv, folds):
    oof = []; va_idxes = []; scores = []; models = {}

    train_x, train_y = X.values, y.values
    fold_idx = cv(train_x, train_y, n_splits=folds)

    for fold, (tr_idx, va_idx) in enumerate(fold_idx):
        tr_x, va_x = train_x[tr_idx], train_x[va_idx]
        tr_y, va_y = train_y[tr_idx], train_y[va_idx]
        va_idxes.append(va_idx)

        est = model(**model_params)

        est.fit(tr_x, np.log1p(tr_y),
               eval_set=[[va_x, np.log1p(va_y)]],
               **fit_params)
        
        model_name = f'LGBM_FOLD{fold}'
        models[model_name] = est

        preds = est.predict(va_x)
        preds = np.expm1(preds)
        oof.append(preds)

        score = mean_absolute_error(va_y, preds)
        scores.append(score)
        print(f'FOLD: {fold}, SCORE: {score:.5f}')

    va_idxes = np.concatenate(va_idxes)
    oof = np.concatenate(oof)
    order = np.argsort(va_idxes)
    oof = oof[order]

    oof_score = mean_absolute_error(train_y, oof)
    print(f'oof score: {oof_score:.5f}\n')
    return oof, models
oof, models = train_cv(train_bert, train_df['LOAN_AMOUNT'],
                        lgb.LGBMModel,
                        model_params,
                        fit_params,
                        cv=make_kf,
                        folds=5)
FOLD: 0, SCORE: 359.82291
FOLD: 1, SCORE: 368.42584
FOLD: 2, SCORE: 362.28032
FOLD: 3, SCORE: 374.44010
FOLD: 4, SCORE: 362.43647
oof score: 365.48106

予測

def predict(test_x, models):
    preds = []
    for i, (name, est) in enumerate(models.items()):
        print(f'{name}')
        preds.append(est.predict(test_x.values))
    preds = np.mean(preds, axis=0)
    preds = np.expm1(preds)

    return preds
preds = predict(test_bert, models)
LGBM_FOLD0
LGBM_FOLD1
LGBM_FOLD2
LGBM_FOLD3
LGBM_FOLD4

提出

submit_df = pd.DataFrame({
    'LOAN_ID': test_df['LOAN_ID'],
    'LOAN_AMOUNT': preds.reshape(-1)
})

display(submit_df)
LOAN_ID LOAN_AMOUNT
0 2041445 408.82997
1 1944435 516.58871
2 2083354 366.54677
3 1993565 1370.62896
4 2064272 331.34300
... ... ...
91817 1993862 586.39110
91818 2015070 588.63327
91819 1950349 623.28754
91820 1921580 976.51682
91821 1976733 433.89723

91822 rows × 2 columns

submit_df.to_csv(os.path.join(Config.output_path, f'submission_bert_tutorial.csv'), index=False)

添付データ

  • BERT_tutorial.ipynb?X-Amz-Expires=10800&X-Amz-Date=20241221T130920Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIP7GCBGMWPMZ42PQ
  • Aws4 request&x amz signedheaders=host&x amz signature=955acb0cc835cb7b85bdeb0ff3a4a2b733ab0d510e81b4c5d06df182bf44bdae
    maruyama

    CVとLBが乖離しているのは、PCAをtrainとtestで別々にかけているからではないでしょうか。 trainでfitしたPCAのモデルを使ってtestをtransformしないと、trainとtestで異なる空間へ写像されてしまうと思います。

    Aws4 request&x amz signedheaders=host&x amz signature=9a2e95f0ead88704563de945ca1dae3739187b772fd2faa3b343b17767c5fb04
    yshr10ic

    コメントありがとうございます。確かにおっしゃる通りですね。時間あるときに修正したもので投稿し直してみます!

    Icon10
    goukaisei

    貴重なトピックありがとうございます! Bert の max_len ってとりあえず文章の最大に合わせておけばいいのかと思ったんですが、そうでもないんですかね?

    Aws4 request&x amz signedheaders=host&x amz signature=9a2e95f0ead88704563de945ca1dae3739187b772fd2faa3b343b17767c5fb04
    yshr10ic

    コメントありがとうございます。私もBERTきちんと理解しているわけではないのですが、文章の最大に合わせてしまうと、文字数が足りないレコードはすべてパディングされてしまうので、ある程度の長さでmax_lenを設定する必要があると思っています。

    Favicon
    new user
    コメントするには 新規登録 もしくは ログイン が必要です。